IMS ====%=

An Introduction to IMS

Version 9

IBM Confidential ZES1-2350-01

IBM Confidential

Chapter 1. Introduction to IMS

This chapter contains an overview of the entire IMS™ product. It includes both the
Transaction Manager and Database Manager components. The following sections
are covered in this chapter:

* “History of IMS”
* “Overview of the IMS Product” on page 4

History of IMS

As shown in the next few sections, IMS has been an important part of world-wide
computing since its inception.

Beginnings at NASA

On May 25, 1961, United States President John F. Kennedy challenged American
industry to send an American to the moon and have him return safely to earth. This
feat was to be accomplished before the end of the decade. American Rockwell won
the bid to build the spacecraft for the Apollo Program and, in 1965, they established
a partnership with IBM to fulfill the requirement for an automated system to manage
large bills of material for the construction of the spacecraft.

In 1966, 12 members of the IBM team, along with 10 members from North
American Rockwell and 3 members from Caterpillar Tractor, started the design and
development of the system that was called Information Control System (ICS) and
Data Language/Interface (DL/I). During the design and development process, the
IBM team was moved to Los Angeles and increased to 21 members. This team
completed and shipped the first release of ICS.

In April, 1968, ICS was installed. The first “READY” message was displayed on an
IBM 2740 typewriter terminal at the Rockwell Space Division in Downey California,
on August 14, 1968.

ICS was renamed Information Management System/360™ (IMS/360) in 1969 and
became available to the world.

Since 1968, IMS:
* Helped achieve President Kennedy’s dream.
» Started the database management system revolution.

» Continues to evolve to meet and exceed the data processing requirements
demanded by today’s businesses and governments.

IMS as a Database Management System

The IMS database management system (DBMS) realized the concept of separating
application code from the data. The point of separation was the Data
Language/Interface (DL/I). IMS controlled the access and recovery of the data.

This separation established a new paradigm for application programming. The
application code could now focus on the manipulation of the data and not have the
overhead associated with the access and recovery of the data. This paradigm
virtually eliminated the need for redundant copies of the data. Multiple applications
could access and update a single instance of the data, thus providing current data
for each application.

© Copyright IBM Corp. 2004 3

IBM Confidential

The DL/l Callable Interface

Application programs still access and navigate through the data by using the DL/I
standard callable interface. Online access to the data became possible because the
application code was separated from the data control.

IMS as a Transaction Manager

IBM developed the online component to ICS/DL/I to support data communication
access to the databases. The DL/I callable interface was expanded to the online
component of the product to enable data communication transparency to the
application programs. A message queue function was created to maintain the
integrity of data communication messages and to provide a queuing concept for
scheduling application programs.

The online component to ICS/DL/I ultimately became the Data Communications
(DC) function of IMS. IMS DC became the IMS Transaction Manager (IMS TM) in
IMS Version 4.

Overview of the IMS Product

4

IMS delivers accurate, consistent, timely, and critical information to application
programs, which deliver the information to many end users simultaneously.

IMS has been developed to provide an environment for applications that require
very high levels of performance, throughput, and availability. IMS uses the
maximum facilities that the operating system and hardware have to offer. Currently,
IMS runs on z/OS® and on zSeries hardware.

IMS consists of three components, the Database Manager (IMS DB) component,
the Transaction Manager (IMS TM) component, and a set of system services that
provide common services to the other two components. Together, (known as IMS
DB/DC) they create a complete online transaction processing environment providing
continuous availability and data integrity. The individual functions provided by these
components are described in more detail later in this book.

IMS DB is a DBMS that helps you organize business data with both program and
device independence. With IMS DB:

» Database transactions (inserts, updates, and deletes) are performed as a single
unit of work so that the entire transaction either occurs or does not occur.

» The data in each database is guaranteed to be consistent.

» Multiple database transactions can be performed concurrently with the results of
each transaction kept isolated from the others.

» The data in each database is guaranteed to remain even when the DBMS is not
running.

IMS TM is a message-based transaction processor. IMS TM provides services to:

* Process input messages received from a variety of sources (such as the terminal
network, other IMSs, and the Web).

* Process output messages created by application programs.
* Provide an underlying queueing mechanism for handling these messages.

» Provide high-volume, high-performance, high-capacity, low-cost transaction
processing for both IMS DB’s hierarchical databases and DB2®’s relational
databases.

IMS: An Introduction to IMS

IBM Confidential

IMS TM supports many terminal sessions at extremely high transaction volumes.

IMS TM and IMS DB can be ordered and paid for separately if the functions of the
other component are not required. The appropriate system services are provided for
the component ordered.

IMS has been developed so that each new release of IMS is upwardly compatible,
so investment in existing applications is preserved. To accommodate the changing
requirements of IT systems, many new features have been added. This has also
resulted in a number of IMS features being wholly or partially superseded by newer
features that provide better functionality.

Applications written to use IMS functions can be written in a number of
programming languages. Programming languages currently supported are
Assembler, C, COBOL, Java", Pascal, PL/I and REXX. The IMS resources are
accessed by the application by calling a number of standard IMS functions.
Applications access these functions through a standard application programming
interface (API) for both the Transaction Manager and Database Manager
components. This interface is DL/I.

IMS Database Manager

At the heart of IMS DB are its databases and its data manipulation language (DL/I
calls). IMS DB lets you:

* Maintain data integrity.

* Define the database structure and the relationships among the database
elements.

* Query information in the database.

» Add new information to the database.

* Delete information from the database.

* Update information in the database.

Additionally, IMS DB lets you adapt IMS databases to the requirements of your
many and varied applications. Application programs can access common and,
therefore, consistent data, reducing the need to maintain the same data in multiple
ways in separate files for different applications.

IMS DB provides:

* A central point of control and access for the IMS data that is processed by IMS
applications.

» Facilities for securing (backup and recovery) and maintaining the databases. It
allows multiple tasks (batch and/or online) to access and update the data while
retaining the integrity of that data. It also provides facilities for tuning the
databases by reorganizing and restructuring them.

IMS databases are hierarchical. Data within the database is arranged in a tree
structure, with data at each level of the hierarchy related to, and in some way
dependent upon, data at the higher level of the hierarchy (see Figure 1 on page 6).
By following this model, a specific data item only needs to be stored within the
database once. The data item is then available to any user who is authorized to use
it. Users do not need to have personal copies of the data.

Chapter 1. Introduction to IMS 5

Level 1

Level 2

Level 3

IBM Confidential

Parent of Stock

Part and Purchase Order

Stock

Purchase Child of Part and
Order Parent of Detail

Child of

Detail Purchase Order

Figure 1. Example of a Hierarchical Data Model

IMS databases are accessed internally using a number of IMS’s database
organization access methods. The actual database data is stored on disk storage
using normal z/OS access methods.

IMS DB provides access to these databases from applications running under the
IMS Transaction Manager, CICS® Transaction Server for 0S/390® and z/OS, z/OS
batch jobs, WebSphere® Application Server for z/OS, and DB2 UDB for z/OS stored
procedures.

IMS DB can be ordered separately from the base IMS product. This configuration is
called DB control (DBCTL).

Related Reading: For more information about IMS DB, see Part 2, “IMS Database
Manager,” on page 35.

IMS Transaction Manager

IMS TM provides users of a network with access to applications running under IMS.
The users can be people at terminals or workstations, or other application
programs, either on the same z/OS system, on other z/OS systems, or on other
non-z/OS platforms.

A transaction is a specific setup of input data that triggers the execution of a
specific business application program. The message that is destined for an
application program, and the return of any results, is considered one transaction.

When IMS TM is used with IMS DB, it extends the facilities of that database
management system to the online, real-time environment. IMS TM enables
terminals or other devices or subsystems to enter transactions that initiate
application programs, which access IMS DB or DB2 databases and return results.

You can define a variety of online processing options. For example, you can define
transactions for high-volume data-entry applications, others for interactive

6 IMS: An Introduction to IMS

IBM Confidential

applications, and still others to support predefined queries. IMS TM supports a wide
variety of terminals and devices. It also enables you to develop a wide range of
high-volume, rapid-response applications, and to geographically disperse your data
processing locations, while keeping centralized control of your database.

IMS TM can be ordered separately from the base IMS product. This configuration is
called DC control (DCCTL).

Related Reading: For more information about IMS TM, see Part 3, “IMS
Transaction Manager,” on page 111.

IMS System Services

There are a number of functions that are common to both the Database Manager
and Transaction Manager. These services:

* Recover data
* Restart and recover IMS following failures
* Provide security (controlling access to and modification of IMS resources)

* Manage the application programs (dispatching work, loading application
programs, providing locking services)

* Provide diagnostic and performance information
* Provide facilities for operating IMS

* Provide interfaces to other z/OS subsystems that communicate with IMS
applications

Another IMS system service is Database Recovery Control (DBRC). DBRC provides
the recovery services part of the IMS system. DBRC:

* Controls the allocation and use of all IMS logs in an online environment
» Can provide access control for databases

» Can control database recovery

* Can work closely with the IMS recovery utilities

DBRC uses a set of control data sets, (collectively called the Recovery Control data
sets or the RECON data sets) to store the control information that is required to
fulfill these functions.

Related Reading: A more detailed description of DBRC is found in Chapter 26,
“Database Recovery Control (DBRC),” on page 263.

Accessing IMS

Network access to IMS Transaction Manager was originally by IBM’s systems,
which evolved into the System Network Architecture (SNA), as implemented in the
VTAM® program product (now a component of z/OS). Now, there are multiple ways
to access IMS resources by networks using Transmission Control Protocol/Internet
Protocol (TCP/IP), as well as other methods (such as IMS’s database resource
adapter (DRA) or through other products like Websphere MQ).

The interfaces to IMS are pictured in Figure 2 on page 8.

Chapter 1. Introduction to IMS 7

IBM Confidential

<
I DB2
Tables
Distributed z/OS Applications, I
DB2 Stored Procedures, or —
WebSphere Application Server for zZOS I IMS | CIics
Databases DB2 «—>
ODBA DRA

A I A A
A A A

OM API OTMA
4 4 4 4
A A A A A
CICS, or
APPC [« ACF/VTAM oS DB2 Stored WepSphere
Procedures
4 A A
v A
TCP/P
A A
[ﬁl! SNA <« i XVebrS pr_ere ! Lgr"‘iloprk DataPIr'\élsagator
=l pplication ,
&_~ Network Server for Z/OS (Web Server,

TN3270 Client)

‘ Figure 2. Interfaces to IMS
|

How IMS Relates to z/OS

IMS runs on IBM zSeries or compatible mainframes that run the z/OS operating
system. In fact, there is a symbiotic relationship between IMS and z/OS. Both are
tailored to provide the most efficient use of the hardware and software components.

IMS runs as a z/OS subsystem and uses several address spaces. There is one
controlling address space (called a control region), several separate address
spaces that provide IMS services, and several address spaces (called dependent
regions) that run IMS application programs. The various components of an IMS
system are explained in more detail in “Structure of IMS Subsystems” on page 11.

Related Reading: For more information about the relationships between IMS and
z/0S, see Chapter 2, “IMS and z/OS,” on page 11. For full details on the
compatibility of IMS releases with versions of the operating system and associated
products, see the current release planning guides:

8 IMS: An Introduction to IMS

IBM Confidential

* IMS Version 7: Release Planning Guide
* IMS Version 8: Release Planning Guide
* IMS Version 9: Release Planning Guide

Parallel Sysplex

IMS exploits the z/OS Parallel Sysplex® environment to enable a more dynamic,
available, manageable, scalable, and well performing environment for database,
transaction, and systems management.

In a Parallel Sysplex environment, you can run multiple IMS subsystems that share
message queues and databases. This sharing enables workload balancing and
insulation from individual IMS outages. If one IMS in the sysplex fails, others
continue to process the workload, so the enterprise is minimally affected.

Related Reading: For more information on this topic, see Part 6, “IMS in a Parallel
Sysplex Environment,” on page 313.

Chapter 1. Introduction to IMS 9

IBM Confidential

10 IMS: An Introduction to IMS

IBM Confidential

Chapter 2. IMS and z/OS

This chapter describes how IMS subsystems are implemented on an z/OS system.
It then gives an overview of IMS’s use of z/OS facilities.

The following sections are covered in this chapter:
» “Structure of IMS Subsystems”

* “Running an IMS System” on page 21

* “Running Multiple IMS Systems” on page 22

* “How IMS Uses z/OS Services” on page 23

Structure of IMS Subsystems

This section describes the various types of z/OS address spaces and their
relationship with each other. zZ/OS address spaces are sometimes called regions, as
in the IMS control region. The term region is synonymous with a z/OS address
space.

The core of an IMS subsystem is the control region, running in one z/OS address
space. For each control region there are multiple separate address spaces that
provide additional services to the control region or in which the IMS application
programs run.

In addition to the control region, some applications and utilities used with IMS run in
separate batch address spaces. These are separate to an IMS subsystem and its
control region and have no connection with it.

IMS Control Region

The control region (CTL) is a z/OS address space that can be initiated through a
z/OS start command, or by submitting JCL.

The IMS control region provides the central point for an IMS subsystem. The control

region:

* Provides the interface to the SNA network for the Transaction Manager functions.

» Provides the Transaction Manager OTMA interface for access to non-SNA
networks.

» Provides the interface to z/OS for the operation of the IMS subsystem.

» Controls and dispatches the application programs running in the dependent
regions.

The control region also provides all logging, restart and recovery functions for the
IMS subsystems. The terminals, message queues, and logs are all attached to this
region, and the Fast Path database data sets are also allocated by the control
region.

A type 2 supervisor call routine (SVC) is used for switching control information,
message and database data between the control region, all other regions, and
back.

There are three different types of IMS control regions, depending on whether the
Database Manager or Transaction Manager components (or both) are being used.
These three control region types are:

© Copyright IBM Corp. 2004 11

12

IBM Confidential

DB/DC — This is a control region with both Transaction Manager and Database

Manager components installed. It provides the combined functionality of both the

other two types of control regions listed below. Note that when a DB/DC region is

providing access to IMS databases for a CICS region, it is referred to in some

documentation as providing DBCTL services, though it might, in fact, be a full

DB/DC region and not just a DBCTL region. The “DC” in DB/DC is a left over

from when the Transaction Manger was called the Data Communications function

of IMS. As shown in Figure 3 on page 13, the DB/DC control region provides

access to the:

— IMS message queues for IMS applications running in the message processing
program (MPP) or Java message processing regions.

— IMS libraries.

— IMS logs.

— Fast Path databases.

— DL/l separate address space.

— Database Recovery Control (DBRC) region.

— IMS Fast Path region (IFP).

— Java message processing program (JMP) region.

— Java batch processing program (JBP) region.

— BMP address spaces.

Related Reading: For more information about the separate address spaces, see

“IMS Separate Address Spaces” on page 14. For more information about the

various types of regions for application programs, see “Application Dependent
Regions” on page 16.

IMS: An Introduction to IMS

IBM Confidential

IMS
Message Queues

=
|

IMS Libraries

Network

A

Fast Path
Databases

=
|

System
A A A A A A A
A4 A4
DLI
Separate DBRC
Address Region
Space
0| C
Full-Function RECON
Databases Data Sets
JMP JBP MPP IFP BMP
Application Application Application Application Application
Program Program Program Program Program

Figure 3. Structure of an IMS DB/DC Subsystem

Control
Region
Address
Space

Separate
Address
Spaces

Dependant
Regions

* DBCTL — This is a control region with only the Database Manager component
installed (pronounced DB Control). DBCTL can provide IMS database functions
to batch message programs (BMP and JMP application programs) connected to
the IMS control region, to application transactions running in CICS Transaction
Manager regions, and to other z/OS address spaces (for example, DB2 UDB for
z/OS stored procedures) by using the Open Database Access (ODBA) interface.

Chapter 2. IMS and z0S 13

IBM Confidential

« DCCTL — This type of control region has only the Transaction Manager
component installed (pronounced DC Control). DCCTL can also be used as the
Transaction Manager front end for a DB2 UDB for z/OS.

In some of the IMS documentation, the terms DB/DC, DBCTL, and DCCTL are also
used to see what sort of IMS system is being defined during an IMS system
definition; that is, for what functions will be in the IMS libraries after the system
definition process has completed.

IMS Separate Address Spaces

14

The control region has separate address spaces to provide some of the services of
the IMS subsystem.

These regions are automatically started by the IMS control region as part of its
initialization, and the control region will not complete initialization until these
dependent regions have started and connected to the IMS control region. Every
IMS control region has a DBRC region. The other two separate address spaces are
optional, depending on the IMS features used. For DL/I, separate address space
options can be specified at IMS initialization.

DBRC Region

The DBRC region processes all access to the DBRC recovery control (RECON)
data sets. It also performs all generation of batch jobs for DBRC (for example, for
archiving the online IMS log). All IMS control regions have a DBRC address space,
as it is needed, at a minimum, for managing the IMS logs.

DL/l Separate Address Space (DLISAS)

This address space performs most data set access functions for the IMS Database
Manager component (except for the Fast Path DEDB databases, described later).
The full-function database data sets are allocated by this address space. It also
contains some of the control blocks associated with database access and some
database buffers.

This address space is not present with a DCCTL system because the Database
Manager component is not present.

For a DBCTL control region, this address space is required and always present.

For a DB/DC control region, you have the option of having IMS database accesses
performed by the control region or having the DB/DC region start a DL/| separate
address space. For performance and capacity reasons, use a DL/I separate
address space.

Common Queue Server (CQS) Address Space

Common Queue Server (CQS) is a generalized server that manages data objects
on a z/OS coupling facility on behalf of multiple clients. One CQS is shipped with
every IMS.

CQS uses the z/OS coupling facility as a repository for data objects. Storage in a
coupling facility is divided into distinct objects called structures. Authorized
programs use structures to implement data sharing and high-speed serialization.
The coupling facility stores and arranges the data according to list structures.
Queue structures contain collections of data objects that share the same name,
known as queues. Resource structures contain data objects organized as uniquely
named resources.

IMS: An Introduction to IMS

IBM Confidential

CQS receives, maintains, and distributes data objects from shared queues on
behalf of multiple clients. Each client has its own CQS access the data objects on
the coupling facility list structure. IMS is one example of a CQS client that uses
CQS to manage both its shared queues and shared resources.

CQS runs in a separate address space that can be started by the client (IMS). The
CQS client must run under the same z/OS operating system where the CQS
address space is running.

CQS is used by IMS DCCTL and IMS DB/DC control regions if they are
participating in sysplex sharing of IMS message queues or resource structures.

Clients communicate with CQS using CQS requests that are supported by CQS
macro statements. Using these macros, CQS clients can communicate with CQS
and manipulate client data on shared coupling facility structures. Figure 4 shows the
communications and the relationship between clients, CQSs, and the coupling
facility.

Operating System n

Operating System A |

o

Client 1

A 4

CQS 1 CQSn [*» Clientn

1

A4 v

Coupling Facility

Figure 4. Client Systems, CQS, and a Coupling Facility

Related Reading: For complete information about CQS, see the IMS Version 9:
Common Queue Server Guide and Reference.

Common Service Layer

The IMS Common Service Layer (CSL) is a collection of IMS manager address
spaces that provide the infrastructure needed for systems management tasks. The
CSL address spaces include Operations Manager (OM), Resource Manager (RM),
and Structured Call Interface (SCI). They are briefly described in the following
sections.

The IMS CSL reduces the complexity of managing multiple IMS systems by
providing you with a single-image perspective in an IMSplex. An IMSplex is one or
more IMS subsystems that can work together as a unit. Typically, but not always,
these subsystems:

» Share either databases or resources or message queues (or any combination)
* Run in an z/OS sysplex environment
* Include an IMS CSL

Related Reading: For a further discussion of IMS in a sysplex environment, see:

Chapter 2. IMS and zO0S 15

IBM Confidential

« Chapter 31, “IMSplexes,” on page 337
* IMS Version 9: Administration Guide: System

For a detailed discussion of IMS in a sysplex environment, see:

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology

* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex

* IMS in the Parallel Sysplex: Volume Ill: IMSplex Implementation and Operations

Operations Manager Address Space: The Operations Manager (OM) controls
the operations of an IMSplex. OM provides an application programming interface
(the OM API) through which commands can be issued and responses received.
With a single point of control (SPOC) interface, you can submit commands to OM.
The SPOC interfaces include the TSO SPOC, the REXX SPOC API, and the IMS
Control Center. You can also write your own application to submit commands.

Related Reading: For a further discussion of OM, see “Operations Manager” on
page 339.

Resource Manager Address Space: The Resource Manager (RM) is an IMS
address space that manages global resources and IMSplex-wide processes in a
sysplex on behalf of its clients. IMS is one example of an RM client.

Related Reading: For a further discussion of RM, see “Resource Manager” on
page 339.

Structured Call Interface Address Space: The Structured Call Interface (SCI)
allows IMSplex members to communicate with one another. The communication
between IMSplex members can happen within a single z/OS image or among
multiple z/OS images. Individual IMS components do not need to know where the
other components reside or what communication interface to use.

Related Reading: For a further discussion of SCI, see “Structured Call Interface”
on page 339.

Application Dependent Regions

IMS provides dependent region address spaces for the execution of system and
application programs that use IMS services.

The application dependent regions are started as the result of JCL submission to
the operating system by the IMS control region, following an IMS command that
had been entered.

After they are started, the application programs are scheduled and dispatched by
the control region. In all cases, the zZ/OS address space executes an IMS region
control program. The application program is then loaded and called by the IMS
code.

There can be up to 999 application dependent regions connected to one IMS
control region, made up of any combination of the following dependent region types:

» Message processing region (MPR)
* IMS Fast Path region (IFP), processing Fast Path applications or utilities

» Batch message processing (BMP) region, running with or without HSSP (High
Speed Sequential Processing)

» Java message processing (JMP) region

16 IMS: An Introduction to IMS

IBM Confidential

» Java batch processing (JBP) region
» DBCTL thread (DBT)

The combination of what region type can be used in the various types of IMS
control regions, can be found in Table 1.

Table 1. Support for Region Types by IMS Control Region Type

Application Address

Space Type DCCTL DBCTL DB/DC
MPR Y N Y

IFP Y N Y
BMP (transaction oriented) | Y (") N Y
BMP (batch) N Y Y

JMP Y N Y

JBP Y Y Y
Batch N N N

DBT N Y Y

1. BMP regions attached to a DCCTL control region can only access the IMS
message queues and DB2 UDB for z/OS databases.

Message Processing Region

This type of address space is used to run applications to process messages input
to the IMS Transaction Manager component (that is, online programs). The address
space is started by IMS submitting the JCL as a result of an IMS command. The
address space does not automatically load an application program but will wait until
work becomes available.

There is a complex scheme for deciding which MPR to run the application program.
We will give a brief description below. When the IMS dispatching function
determines that an application is to run in a particular MPR, the application program
is loaded into that region and receives control. It processes the message, and any
further messages for that transaction waiting to be processed. Then, depending on
options specified on the transaction definition, the application either waits for further
input, or another application program will be loaded to process a different
transaction.

Fast Path Region
This type of address spaces runs application programs to process messages for
transactions that have been defined as Fast Path transactions.

Fast Path applications are very similar to the programs that run in an MPR. Like
MPRs, the IFP regions are started by the IMS control region submitting the JCL as
a result of an IMS command. The difference with IFP regions is in the way IMS
loads and dispatches the application program and handles the transaction
messages. To allow for this different processing, IMS imposes restrictions on the
length of the application data that can be processed in an IFP region as a single
message.

IMS employs a user-written exit routine, which you have to write, to determine
whether a transaction message should be processed in an IFP region and which
IFP region it should be processed in. The different dispatching of the transaction
messages by the control region is called Expedited Message Handling (EMH). The

Chapter 2. IMS and z0S 17

18

IBM Confidential

intention is to speed the processing of the messages by having the applications
loaded and waiting for input messages, and, if the message is suitable, dispatching
it directly in the IFP region, bypassing the IMS message queues. Fast Path was
originally a separately priced function available with IMS, intended to provide faster
response and allow higher volumes of processing. It is now part of the IMS base
product.

Batch Message Processing Region

Unlike the other two types of application dependent regions, the BMP is not started
by the IMS control region, but is started by submitting a batch job, for example by a
user from TSO or by a job scheduler. The batch job then connects to an IMS
control region defined in the execution parameters. There are two types of
applications that can run in BMP address spaces:

* Message Driven BMPs (also called transaction-oriented BMPs) that read and
process messages off the IMS message queue.

* Non-message BMPs (batch-oriented) that do not process IMS messages.

BMPs have access to the IMS full-function databases (not Fast Path), providing that
the control region has the Database Manager component installed. BMPs can also
read and write to z/OS sequential files, with integrity, using the IMS GSAM access
method DBCTL Thread (DBT).

When a CICS system connects to IMS (either as DBCTL or as IMS DB/DC) using
the Database Resource Adapter (DRA), each CICS system will have a pre-defined
number of connections with IMS. Each of these connections is called a thread. See
Figure 5 on page 19.

IMS: An Introduction to IMS

IBM Confidential

RECON
Data Sets

Full-Function
Databases

Figure 5. Structure of an IMS DBCTL System

Separate
Address
Spaces

DBRC

A4

Network

Control Region
Address Space

Region

DLI
Separate |

A4

Address |
Space

IMS DBCTL
System

IMS
. Libraries

r?‘ IMS
El Logs

—

DRA

CICS

Application
Program

Fast Path
. Databases

L
BMP

Application
Program

Dependant Regions

=

JBP

Application
Program

Although these threads are not jobs in their own right, from IMS’s perspective, each
thread appears just like another dependent region and when CICS requires a DL/I
call to IMS, the program will effectively be running in one of these DBT regions.

Java Dependent Regions
IMS Java application programs run in one of two IMS dependent regions that

provide a Java Virtual Machine (JVM) environment for the Java application. The
Java dependent region types are:

* Java Message Processing (JMP) for message-driven Java applications. JMP
applications can process input messages from the message queue (similar to
MPPs) and can access DB2 data (using RRSAF). JMP regions can run in DB/DC
or DCCTL environments.

+ Java Batch Processing (JBP) for non-message-driven Java applications. JBP
applications run in an online batch mode and do not process input messages
(similar to non-message-driven BMP applications), and can access DB2 data.
JBP regions can run in DB/DC, DCCTL, or DBCTL environments.

Chapter 2. IMS and z0S 19

IBM Confidential

Utility Regions

BMP and IFP regions can also be used for other types of work besides running
application programs. BMPs can be used for HSSP processing, and IFPs can be
used for Fast Path utility programs. For further discussion on these, see the IMS
Version 9: Installation Volume 2: System Definition and Tailoring.

Batch Application Address Space

In addition to the dependent application address spaces discussed in “IMS
Separate Address Spaces” on page 14 and “Application Dependent Regions” on
page 16, IMS application programs that only use IMS Database Manager functions
can be run in a separate z/OS address space, not connected to an IMS control
region. This would normally be done for very long running applications that perform
large numbers of database accesses or for applications that do not perform
syncpoint processing. These batch applications can only access full-function
databases.

This is similar to a BMP, in that the JCL is submitted through TSO or a job
scheduler. However, all IMS code used by the application resides in the address
space that the application is running in. The job executes an IMS batch region
controller that then loads and calls the application. Figure 6 shows an IMS batch
region.

Batch Region Address Space

IMS Batch Region Controller
Application |« N A_pplication
Program Files
A
A 4
. - IMS
A | Databases
IMS «) RECON
DLI Modules Data Sets
) [s
h E Logs

Figure 6. Structure of an IMS Batch Region

The batch address space opens and reads the IMS database data sets directly.

20 IMS: An Introduction to IMS

IBM Confidential

Attention: If there are requirements for other programs, either running under the
control of an IMS control region or in other batch regions, to access the databases
at the same time, then caution should be exercised to protect data integrity. See
Chapter 8, “Data Sharing,” on page 83 for more information about how the data can
be updated by multiple applications in a safe manner.

The batch address space writes its own separate IMS log. In the event of a
program failure, it might be necessary to take manual action (for example, submit
jobs to run IMS utilities) to recover the databases to a consistent point. With
dependent application address spaces, this would be done automatically by the IMS
control region. DBRC can be used to track the IMS logs and ensure that correct
recovery action is taken in the event of a failure.

An application can be written so that it can run in both a batch and BMP address
space without change. Some reasons you may want to change programs between
batch and BMP address spaces include length of run time, need of other
applications to access the data at the same time, and your procedures for
recovering from application failures.

Internal Resource Lock Manager (IRLM)

The IRLM address space is only needed if you are going to use block-level or
sysplex data sharing for the IMS databases. The IRLM address space is started
before the IMS control region with the z/OS start command. The IMS control region,
if the start-up parameters specify IRLM, connects to the IRLM specified on startup
and will not complete initialization until connected.

There is one IRLM address space running on each z/OS system to service all IMS
subsystems sharing the same set of databases. For more information on data
sharing in sysplex environment, see:

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology
* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex
* IMS in the Parallel Sysplex: Volume Ill: IMSplex Implementation and Operations

IRLM is delivered as an integral part of the IMS program product, though as
mentioned, you do not have to install or use it unless you need to perform
block-level or sysplex data sharing.

IRLM is also the required the lock manager for DB2 UDB for z/OS.

Do not use the same IRLM address space for IMS and DB2 because the tuning
requirements of IMS and DB2 are different and conflicting. The IRLM code is
delivered with both the IMS and DB2 program products and interacts closely with
both these products. Therefore, you might want to install the IRLM code for IMS
and DB2 separately (that is, in separate SMP/E zones) so you can maintain release
and maintenance levels independently. This can be helpful if you need to install
prerequisite maintenance on IRLM for one database product, as it will not affect the
use of IRLM by the other.

Running an IMS System

The procedures to run IMS address spaces are supplied by IBM. The procedures
are in the IMS.PROCLIB data set. There are procedures for each type of region.

Chapter 2. IMS and z0s 21

IBM Confidential

These procedures should be modified with the correct data set names for each IMS
system. The following list contains the procedure member names (as found in
IMS.PROCLIB) along with the type of region that each will generate:

Procedure

Member Name Region Name

IMS DB/DC control region

DCC DCCTL control region

DBC DBCTL control region

DLISAS DLI separate address space

DBRC Database Recovery Control
DXRJPROC Internal Resource Lock Manager (IRLM)
DFSMPR Message processing region (MPR)
IMSBATCH IMS batch processing region (BMP)
IMSFP Fast Path region (IFP)

FPUTIL Fast Path utility region

DLIBATCH DLI batch region

DFSJBP IMS Java batch processing (JBP) region
DFSJMP IMS Java message processing (JMP) region
IMSRDR IMS JCL reader region

Related Reading: For details of these and other procedures supplied in
IMS.PROCLIB, see the “Procedures” chapter in the IMS Version 9: Installation
Volume 2: System Definition and Tailoring.

Running Multiple IMS Systems

Multiple IMS systems can be run on a single z/OS image or on multiple z/OS
images. One instance of an IMS system (control region and all associated
dependent regions) is referred to as one IMS system. In many cases, these would
be production and testing systems.

Running Multiple IMS Systems on One z/OS Image

The number of subsystems you can run on a single image of z/OS will depend on
many factors. In most installations, you can run up to four IMS subsystems,
although some installations run as many as eight small ones running concurrently.
The number will vary depending on the size of each IMS system. The amount of
z/OS common service area (CSA) required by each IMS is often one of the most
limiting factors in the equation.

Each IMS subsystem should have unique VTAM ACB and IMSID names. The
application dependent regions use the IMSID to connect to the corresponding IMS
control region. If the dependent region starts and there is no control region running
using that IMSID, the dependent region issues a message to the z/OS system
console and then waits for a reply. Each IMS subsystem can have up to 999
dependent regions. However, there are other limiting factors, such as, storage
limitations because of pool usage.

22 |MS: An Introduction to IMS

IBM Confidential

Running Multiple IMS Systems on Multiple z/OS Images

There are basically three ways to run multiple IMSs on multiple z/OS images. They
are:

Multiple Systems Coupling (MSC)

MSC only supports IMS-to-IMS connections. For more information about MSC,
see “Multiple Systems Coupling (MSC)” on page 116.

Inter System Communications (ISC)

ISC is another way to connect multiple subsystems. ISC is more flexible than
MSC, in that ISC supports connections to IMS and other z/OS products, such as
CICS. For more information about ISC, see “Intersystem Communications (ISC)”
on page 117.

Parallel Sysplex

Running multiple IMSs in a Parallel Sysplex environment is a good way to
balance workload, build scalability into your systems, and provide maximum

availability. For more information on this topic, see “Parallel Sysplex” on page 25
and Chapter 31, “IMSplexes,” on page 337.

How IMS Uses z/OS Services

IMS is designed to make the best use of the features of the z/OS operating system.
This includes:

Running in multiple address spaces — IMS subsystems (except for IMS batch
applications and utilities) normally consist of a control region address space,
separate address spaces for system services, and dependent address spaces for
application programs. Running in multiple address spaces gives the following
advantages:

— Maximizes use of CPUs when running on a multi-processor CPC. Address
spaces can be dispatched in parallel on different CPUs.

— Isolates the application programs from the IMS systems code. Reduces
outages from application failures.

Runs multiple tasks in each address space — IMS, particularly in the control
region, creates multiple z/OS subtasks for the various functions to be performed.
This allows other IMS subtasks to be dispatched by z/OS while one IMS subtask
is waiting for system services

IMS uses z/OS cross memory services to communicate between the various
address spaces making up an IMS system. It also uses the z/OS CSA to store
IMS control blocks that are frequently accessed by the address spaces making
up the IMS system. This minimizes the overhead in running in multiple address
spaces.

IMS uses the z/OS subsystem feature — IMS dynamically registers itself as a
z/OS subsystem. It uses this facility to detect when dependent address spaces
fail, prevent cancellation of dependent address spaces.

IMS can make use of an z/OS sysplex. Multiple IMS subsystems can run on the
z/OS systems making up the sysplex and access the same IMS databases and
the same message queue. This gives:

— High availability — z/OS systems and IMS subsystems can be taken in and
out of service without interrupting production.

— High capacity — the multiple IMS subsystems can process far greater
volumes than individual IMSs can.

Related Reading: For further details on sysplex data sharing and shared queues,
see:

Chapter 2. IMS and zZ0S 23

IBM Confidential

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology
* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex
* IMS in the Parallel Sysplex: Volume Ill: IMSplex Implementation and Operations

Transmission Control Protocol/Internet Protocol (TCP/IP)

IMS provides support for z/OS TCP/IP communications through a function called
Open Transaction Manager Access (OTMA). Any TCP/IP application can have
access to IMS by using OTMA. A related IBM product, IMS Connect for z/OS, uses
the OTMA interface to connect IMS to Web servers.

Related Reading: For details on OTMA and IMS Connect for z/OS, see:
» IMS Version 9: Open Transaction Manager Access Guide and Reference
* IMS Connect Guide and Reference

Advanced Program-to-Program Communications (APPC)

IMS supports z/OS CPl communications interface, which defines the Logical Unit
type 6.2 formats and protocols for program-to-program communication. IMS’s
support for APPC is called APPC/IMS.

APPC/IMS enables applications to be distributed throughout your entire network
and to communicate with each other regardless of the underlying hardware.

Related Reading: For more information about IMS’s support for APPC, see
“Advanced Program-to-Program Communication (APPC)” on page 114.

Resource Access Control Facility (RACF)

IMS was developed prior to the introduction of RACF® (part of the Security Server
for z/OS) and other security products. As a result, IMS initially incorporated its own
security mechanisms to control user access to the various IMS resources,
transactions, databases, and so forth. This security was controlled by a number of
means. A number of security exits were provided. Also, a series of bitmaps defined
users and their access to resources. This is referred to as a security matrix. These
are load modules produced by the IMS Security Maintenance utility.

With the introduction of RACF, IMS was enhanced to use RACF (or equivalent
product) for controlling access to IMS resources. It is now possible to use the
original IMS security features, the RACF features, and combinations of these.

Recommendation: Use RACF because it provides more flexibility and the Security
Maintenance utility will not be supported in future releases of IMS.

The normal features of RACF can also be used to protect IMS data sets, both
system and database.

Related Reading: For further information about protecting IMS resources, see
Chapter 24, “IMS Security,” on page 253. For complete information regarding IMS
and security, see the security chapter in the IMS Version 9: Administration Guide:
System.

Resource Recovery Services (RRS)

With z/OS comes a system resource recovery platform. Resource Recovery
Services (RRS) is the sync-point manager, coordinating the update and recovery of

24 |MS: An Introduction to IMS

IBM Confidential

multiple protected resources. RRS controls how and when protected resources are
committed by coordinating with the resource managers, such as IMS, that have
registered with RRS.

RRS provides a system resource recovery platform such that applications executing
on z/OS (such as IMS) can have access to local and distributed resources and
have system-coordinated recovery management of these resources. The support
includes:

» A sync-point manager to coordinate the two-phase commit process

+ Implementation of the SAA® Commit and Backout callable services for use by
application programs

* A mechanism to associate resources with an application instance

» Services for resource manager registration and participation in the two-phase
commit process with RRS

« Services to allow resource managers to express interest in an application
instance and be informed of commit and backout requests

* Services to enable resource managers to obtain system data to restore their
resources to consistent state

* A communications resource manager (called APPC/PC for APPC/Protected
Conversations) so that distributed applications can coordinate their recovery with
participating local resource managers

Related Reading: For more information about how IMS uses RRS, see the IMS
Version 9: Administration Guide: System.

Parallel Sysplex

A Parallel Sysplex environment in z/OS is a combination of hardware and software
components that enable sysplex data sharing. In this context, data sharing means
the ability for sysplex member systems and subsystems to store data into, and
retrieve data from a common area known as a coupling facility. In short, a Parallel
Sysplex can have multiple CPCs and multiple applications (like IMS) that can
directly share the workload.

IMS exploits the z/OS Parallel Sysplex environment to enable a more dynamic,
available, manageable, scalable, and well performing environment for database,
transaction, and systems management.

In a Parallel Sysplex environment, you can run multiple IMS subsystems that share
message queues and databases. This sharing enables workload balancing and
insulation from individual IMS outages. If one IMS in the sysplex fails, others
continue to process the workload, so the enterprise is minimally affected.

Related Reading: For more information on this topic, see Chapter 30, “Introduction
to Parallel Sysplex,” on page 315 and Chapter 31, “IMSplexes,” on page 337.

Chapter 2. IMS and zZOS 25

IBM Confidential

Chapter 11. Overview of IMS TM

IMS TM provides a high-performance transaction processing environment for
database management systems, such as IMS DB and DB2 UDB for z/OS.

IMS TM can be ordered and installed with or without IMS DB.

The following sections are covered in this chapter:

* “Functions of IMS TM”

* “IMS TM and the Network”

* “IMS TM Messages” on page 116

* “Connections to Other IMS and CICS Subsystems” on page 116

Functions of IMS TM

IMS TM provides solutions for cooperative processing, distributed database
processing, and continuous operation. IMS TM:

* Enhances system management.
« Simplifies network administration.
* Manages and secures the IMS TM terminal network.

* Routes messages from terminal to terminal, from application to application, and
between application programs and terminals.

* Queues input and output messages, and schedules messages by associating
programs with the transactions they are to process.

» Participates in distributive processing scenarios where other programs (such as
WebSphere Application Studio) have a need to access IMS.

IMS TM and the Network

© Copyright IBM Corp. 2004

IMS TM interacts with:

* IBM Systems Network Architecture (SNA) network, as currently implemented by
the Communication Server for z/OS, which includes the functions of VTAM. IMS
TM interacts directly with the Communication Server for z/OS.

» Applications that use the z/OS Advanced Program-to-Program Communication
(APPC) protocaol.
Related Reading: For more information about IMS’s support for APPC, see
“Advanced Program-to-Program Communication (APPC)” on page 114.

* Networks that use Transmission Control Protocol/ Internet Protocol (TCP/IP).
Access by using TCP/IP is achieved by way of a separate z/OS address space.
This address space uses IMS’s Open Transaction Manager Access (OTMA)
protocol. The other address space can be another program product such as
IBM’s Websphere MQ or IMS Connect.

Related Reading: For more information about OTMA, see “Open Transaction
Manager Access (OTMA)” on page 114. For further details on the options
available for accessing IMS by using TCP/IP, see:

— Chapter 30, “Introduction to Parallel Sysplex,” on page 315
— IMS Version 9: Open Transaction Manager Access Guide and Reference
— IMS Connect Guide and Reference

113

IBM Confidential

Advanced Program-to-Program Communication (APPC)

As mentioned in “Advanced Program-to-Program Communications (APPC)” on page
24, APPC/IMS support for Logical Unit type 6.2 supports the formats and protocols
for program-to-program communication.

APPC/VTAM is part of the Communication Server for z/OS. It facilitates the
implementation of APPC/IMS support. In addition, APPC/MVS works with
APPC/VTAM to implement APPC/IMS functions and communication services in a
z/OS environment. APPC/IMS takes advantage of this structure and uses
APPC/MVS to communicate with LU 6.2 devices. Therefore, all VTAM LU 6.2
devices supported by APPC/MVS can access IMS using LU 6.2 protocols to initiate
IMS application programs, or conversely be initiated by IMS.

APPC/IMS provides compatibility with non-LU 6.2 device types by providing a
device-independent API. This allows an application program to work with all device
types (LU 6.2 and non-LU 6.2) without any new or changed application programs.

IMS supports APPC conversations in two scenarios:

Implicit
In this case, IMS supports only a subset of the APPC functions, but enables
an APPC incoming message to trigger any standard IMS application that is
already defined in the normal manner to IMS, and uses the standard IMS
message queue facilities, to schedule the transaction into any appropriate
dependent region.

Explicit

In this case, the full set of CPI Communications (CPI-C) command verbs
can be used and the IMS application is written specifically to cater only for
APPC triggered transactions. The standard IMS message queues are not
used in this case, and the IMS control region only helps create the APPC
conversation directly between the APPC client and the IMS dependent
region to service this request. The IMS control region takes no further part,
regardless of how much time the conversation might use while active.

Open Transaction Manager Access (OTMA)

114

OTMA provides an open interface to IMS TM customers. With OTMA, a z/OS or
TCP/IP application program can send a transaction or command to IMS without
using SNA or VTAM. Many programs can connect to IMS TM using OTMA:
middleware software, gateway programs, database, and applications written by IMS
customers. Each of the programs or applications that communicate with IMS using
OTMA are considered OTMA clients.

The OTMA interface itself is very flexible. An OTMA client, an application program
of the client, or both, can use OTMA in many different ways. The execution of some
transactions can involve complex “handshaking” between IMS and the client
program; some transactions can simply use the basic protocol.

The following list illustrates the ways that OTMA can be used to process an IMS
transaction:

Commit-then-send
For commit-then-send (CMO), IMS processes the transaction and commits
the data before sending a response to the OTMA client. Input and output
messages are recoverable.

IMS: An Introduction to IMS

IBM Confidential

Send-then-commit
For send-then-commit (CM1), IMS processes the transaction and sends the
response to the OTMA client before committing the data. Input and output
messages are non-recoverable.

If the application program uses send-then-commit, you must also decide which
synchronization level, or “synclevel” to use. There are three choices:

* None - Output is sent and no response from the client is requested. Data is
committed if send is successful. Data is backed out if the send fails.

» Confirm - Output is sent and response from the client is requested. The OTMA
client must respond with an ACK or NACK. Data is committed if ACK is received.
Data is backed out if NACK is received.

* Syncpt - Output is sent, and response from the client is requested. Use
synclevel=syncpt to coordinate commit processing through RRS. The OTMA
client must respond with an ACK or NACK. Data is committed if ACK is received
and RRS commit is received. Data is backed out if NACK is received or RRS
abort is received.

An application can decide, for example, that inquiry transactions should use
synclevel=none because there are no database updates and that update
transactions should use synclevel=confirm.

The OTMA resynchronization interface ensures that there are no duplicate CMO
input and output messages by using a unique recoverable sequence number in
every CMO message. The client can optionally initiate this during connection time.
WebSphere MQ is the primary program that exploits this OTMA interface
extensively. A WebSphere MQ application program can send a persistent message
to IMS to take advantage of the resynchronization benefit. However, sending a
WebSphere MQ non-persistent CMO message to IMS bypasses the
resynchronization service.

Table 2 can be used to help you decide which method is appropriate for your
application.

Table 2. OTMA Processing Options

Type of Processing Commit-then-send (CMO0) Send-then-commit (CM1)

Conversational transactions | Not supported Supported

Fast Path transactions Not supported Supported

Remote MCS transactions Supported Supported

Shared queues Supported in IMS V7 and Supported in IMS V8 and

above above

Recoverable output Supported Not supported

Synchronized Tpipes Supported Not supported

Program-to-program switch Supported Supported. However, if more
than one program-to-program
switch is performed, only one
program processes as
send-then-commit. The other
program processes as
commit-then-send.

Chapter 11. Overview of IMS TM 115

IBM Confidential

IMS TM Messages

The network inputs and outputs to IMS Transaction Manager take the form of
messages that are input or output, to or from IMS and the physical terminals (or
application programs) on the network (referred to as destinations).

These messages are processed asynchronously (that is, IMS will not always send a
reply immediately, or ever, when it receives a message, and unsolicited messages
might also be sent from IMS). The messages can be of four types:

« Transactions. The data in these messages is passed to IMS application programs
for processing

* Messages to go to another logical destination (for example, network terminals)
« Commands for IMS to process.

» Messages for APPC/IMS to process. Because IMS uses an asynchronous
protocol for messages and APPC uses synchronous protocols (that is, it always
expects a reply when a message is sent), the IMS TM interface for APPC has to
perform special processing to accommodate this.

If IMS is not able to process an input message immediately, or cannot send an
output message immediately, then the message is stored on a message queue
external to the IMS system. IMS will not normally delete the message from the
message queue until it has received confirmation that an application has processed
the message or that the message has reached its destination.

Connections to Other IMS and CICS Subsystems

IMS has special protocols for connecting to other IMS systems, such as Multiple
Systems Coupling (MSC), and to other CICS and IMS systems, such as
Intersystem Communication (ISC), that allows work to be routed to and from the
other systems for processing.

The MSC connections can be through the network to other IMS systems on the
same or other z/OS systems, by using channel-to-channel connections to the same
or another channel attached z/OS system or by using cross memory services to
another IMS subsystem on the same z/OS system.

The ISC links to other CICS or IMS systems is provided over the network by using
VTAM’s LU 6.1 protocol.

Multiple Systems Coupling (MSC)

116

MSC is a part of the IMS Transaction Manager that provides the ability to connect
geographically dispersed IMSs. MSC enables programs and operators of one IMS
to access programs and operators of the connected IMSs. Communication can
occur between two or more (up to 2036) IMSs running on any supported
combination of operating systems.

MSC permits you to distribute processing loads and databases. Transactions
entered in one IMS system can be passed to another IMS system for processing
and the results returned to the initiating terminal. Terminal operators are unaware of
these activities; their view of the processing is the same as that presented by
interaction with a single system.

IMS: An Introduction to IMS

IBM Confidential

MSC only supports connecting one IMS to one other IMS. MSC supports
transaction routing between the participating IMSs by options specified in the IMS
system definition process.

The IMS system where the transaction is entered by the terminal user is referred to
as the front-end system. The IMS system where the transaction is processed is
referred to as the back-end system.

The transaction is entered in the front-end system, and based on the definitions in
the IMS stage 1 definition, the transaction is sent to the back-end system. When the
transaction reaches the back-end system, all standard IMS scheduling techniques
apply. After processing, the results are sent back to the front-end system, which
then returns the results to the terminal user, who was unaware that any of this
occurred.

Intersystem Communications (ISC)

ISC is also part of the IMS Transaction Manager and is another way to connect
multiple subsystems. ISC is more flexible than MSC, in that ISC supports the
following connections:

* IMS-to-IMS

* IMS-to-CICS

* IMS-to-user-written VTAM program

The transaction routing specification for ISC is contained in the application program,
instead of in the IMS system definition as in MSC.

ISC links between IMS and CICS use the standard LU 6.1 protocol available within
the network. They can use standard VTAM connections or direct connections.

As defined under SNA, ISC is an LU 6.1 session that:
» Connects different subsystems to communicate at the application level.

* Provides distributed transaction processing permitting a terminal user or
application in one subsystem to communicate with a terminal or application in a
different subsystem and, optionally, to receive a reply. In some cases, the
application is user written; in other cases, the subsystem itself acts as an
application.

* Provides distributed services. Therefore, an application in one subsystem can
use a service (such as a message queue or database) in a different subsystem.

SNA makes communication possible between unlike subsystems and includes
SNA-defined session control protocols, data flow control protocols, and routing
parameters.

MSC Versus ISC

As mentioned in “Multiple Systems Coupling (MSC)” on page 116 and “Intersystem
Communications (ISC),” both MSC and ISC enable a user to:

* Route transactions
» Distribute transaction processing
* Grow beyond the capacity of one IMS system

Both ISC and MSC take advantage of the parallel session support VTAM provides.
Some key differences exist, however. Table 3 on page 118 shows the major
functions of MSC and ISC and shows the differences in support.

Chapter 11. Overview of IMS TM 117

118

Table 3. Comparing MSC and ISC Functions

IBM Confidential

MSC Functions

ISC Functions

MSC connects multiple IMS systems only to
each other. These IMS systems can all
reside in one processor, or they can reside in
different processors.

ISC can connect either like or unlike
subsystems, as long as the connected
subsystems both implement ISC. Thus, a
user can couple an IMS subsystem to:

* Another IMS subsystem

* A CICS subsystem

* A user-written subsystem

Communication in the MSC environment is
subsystem-to-subsystem.

Communication is between application
programs in the two subsystems. The
subsystems themselves are session
partners, supporting logical flows between
the applications.

Processing is transparent to the user. That
is, to the user, MSC processing appears as if
it is occurring in a single system.

Message routing requires involvement by the
terminal user or the application to determine
the message destination because ISC
supports coupling of unlike subsystems.
Specified routing parameters can be
overridden, modified, or deleted by Message
Format Service (MFS).

When not using the MSC-directed routing
capability, the terminal operator or application
program does not need to know routing
information. Routing is automatic based on
system definition parameters.

ISC provides a unique message-switching
capability that permits message routing to
occur without involvement of a user
application.

MSC supports the steps of a conversation to
be distributed over multiple IMS subsystems,
transparent to both the source terminal
operator and to each conversational step
(application).

ISC supports the use of MFS in an IMS
subsystem to assist in the routing and
formatting of messages between
subsystems.

MSC does not support the use of the Fast
Path Expedited Message Handler (EMH).

ISC supports the use of Fast Path Expedited
Message Handler (EMH) between IMS
subsystems.

IMS: An Introduction to IMS

IBM Confidential

Chapter 12. IMS TM Control Region

The IMS TM control region is a zZ/OS address space that can be initiated through an
z/OS START command or by submitting JCL. The terminals, databases, message
queues, and logs are all attached to this region. A type 2 supervisor call routine is
used for switching control information, messages, and database data to the
dependent regions and back.

The control region normally runs as a system task and uses z/OS access methods
for terminal and database access.

The following sections are covered in this chapter:
* “IMS Messages”
* “IMS Transaction Flow” on page 120

IMS Messages

The goal of IMS TM is to perform online transaction processing. This consists of:

1. Receiving a request for work to be done. The request is entered at a remote
terminal. It is usually made up of a transaction code, which identifies to IMS the
kind of work to be done and some data that is to be used in doing the work.

2. Initiating and controlling a specific program that will use the data in the request
to do the work the remote operator asked to be done, and to prepare some data
for the remote operator in response to the request for work (for example,
acknowledgment of work done or answer a query).

3. Transmission of the data prepared by the program back to the terminal originally
requesting the work.

The above sequence is the simplest form of a transaction. It involves two
messages: an input message from the remote operator requesting that work be
done, and an output message to the remote operator containing results or
acknowledgment of the work done.

Multiple and Single Segment Messages

A message, in the most general sense, is a sequence of transmitted symbols. In the
context of IMS, this is called a transmission. A transmission may have one or more
messages, and a message may have one or more segments. A segment is defined
by an end-of-segment (EOS) symbol, a message is defined by an end-of-message
(EOM) symbol and a transmission is defined by an end-of-data (EOD) symbol. The
valid combinations of the conditions represented by EOS, EOM, and EOD can be
found in Table 4.

Table 4. Valid Combinations of the EOS, EOM, and EOD Symbols

Condition Represents

EOS End of segment

EOM End of segment / end of message

EOD End of segment / end of message / end of data

The relationship between transmission, message and segment is shown in
Figure 35 on page 120.

© Copyright IBM Corp. 2004 119

IBM Confidential

Segment

Segment

Segment Segment Segment Segment Segment

EOS

EOM EOS EOS EOM EOS EOD

Figure 35. Transmission, Message, and Segment Relationships

The character values or conditions that represent the end of segment and the end
of the message (or both) depend on the terminal type.

For 3270 terminals, the physical terminal input will always be a single segment
message and transmission. The EOS, EOM, and EOD condition will all be set after
the enter or program function key is pressed and the data is transmitted.

On the output side, a message can be divided into multiple segments. Also an
application program can send different messages to different terminals, that is, a
message to a printer terminal and a message to the input display terminal. Each
segment requires a separate insert call by the application program.

The format of a message segment as presented to or received from an application
program is shown in Figure 36, where:

LL Total length of the segment in bytes, including the LL and ZZ fields.

z IMS system field

DATA Application data, including the transaction code

Figure 36. Format of a Message Segment

LL 7z
2 bytes

Data

2 bytes n bytes

IMS Transaction Flow

120

Once the control region is started, it will start the system dependent regions
(DLISAS and DBRC). The MPR and BMP regions can be started by:

« IMS jobs
» JOB submission
* Automated operations commands

The general flow of a message from a message processing program (MPP) is
shown in Figure 37 on page 121. The intent of this figure is to give a general flow of
the message through the system and not a complete detailed description.

IMS: An Introduction to IMS

IBM Confidential

Control Region Address Space DLI Separate Message Processing
Address Space Region
ACBs Application
Program ACBs | Program
Isolation _|—‘
(PI) GU IOPCB
4 ISRT IOPCB
ISRT ALTPCB
WADS Scheduler
Logging DLI
Modules
b OLDS
Buffers Database » GU segment
« Changes ISRT segment
REPL segment
DLET segment
OLDS Message MFS Queue
Handler Mgmt I
Message Tran Database
Input |, S
p [LTERM Buffers
Message MFS QDS
Buffers Pool Buffers

A 4 v

0 O [

FORMAT Msg Queue
Datasets Databases

Figure 37. The IMS Control Region, Its Control, and Data (Message) Flow

A further description of Figure 37 follows:

1. The input data from the terminal is read by the data communication modules.
After editing by message format service (MFS), and verifying that the user is
allowed to execute this transaction, this input data is put in the IMS Message
Queues. These are sequenced by destination, which could be either transaction
code (TRAN) or logical terminal (LTERM). In the case of input messages, this
would be the TRAN.

2. The scheduling modules will determine which MPP is available to process this
transaction, based on a number of system and user specified considerations,
and will then retrieve the message from the IMS message queues, and start the
processing of a transaction in the MPP.

3. Upon request from an MPP or BMP, the DL/l modules pass a message or
database segment to or from the MPP/BMP.

Note: In z/OS, the DL/l modules, control blocks, and pools reside in the
common storage area (CSA or ECSA) and the control region is not needed for
most DB processing (the exception being Fast Path).

4. Once the MPP has finished processing, the message output from the MPP is
also put into the IMS Message Queues, in this case, queued against the logical
terminal (LTERM).

Chapter 12. IMS TM Control Region 121

122

IBM Confidential

5. The communication modules retrieve the message from the message queues,

and send it to the output terminal. MFS is used to edit the screen and printer
output.

All changes to the message queues and the databases are recorded on the
logs. In addition, checkpoints for system (emergency) restart and statistical
information are logged.

Notes:

a. The physical logging modules run as a separate task and use z/OS ESTAE
for maximum integrity.

b. The checkpoint identification and log information are recorded in the restart
and RECON data sets.

Program Isolation locking assures database integrity when two or more MPPs or
BMPs update the same database. It also backs out database changes made by
failing programs. This is done by maintaining a short-term, dynamic log of the
old database element images. IRLM is an optional replacement for Pl locking.
IRLM is required, however, if IMS is participating in data sharing.

IMS: An Introduction to IMS

IBM Confidential

Chapter 13. How IMS TM Processes Input

IMS can accept input messages from a variety of sources. Originally, all input was
from 3270 type terminals.

The following sections are covered in this chapter:
* “Input Message Types”

* “Terminal Types” on page 124

* “Input Message Origin” on page 124

« “Terminal Input Destination” on page 124

* “Message Queueing” on page 125

* “Message Scheduling” on page 128

* “Transaction Scheduling” on page 130

See Figure 38 while reading the sections listed above.

Data Communication e e
Modules] Cro de : password Text
Master «—» | Receive
Terminal % Queue —
Log Logioal | 7oy
Determine Destination b=
Format Message
User |
Terminal === B Log — /command | password Text
Buffers Buffers
A A
A y
Message Log
Queue Data Sets
Data Sets

Figure 38. Input Message Processing

Input Message Types

When IMS reads data from a terminal that has come from the telecommunication
access method, IMS first checks the type of input data.
Input from terminals can consist of three types of messages:

An input transaction message
This message is routed to an application program for processing with the
first 1-to-8 bytes of the message identifying the transaction code.

A message switch
This message is routed to another terminal, with the first 1-to-8 bytes used

© Copyright IBM Corp. 2004 123

IBM Confidential

as the name of the destination logical terminal (LTERM). The LTERM can
be a USERID if the Extended Terminal Option (ETO) is used.

A command
A command is processed by IMS itself.

Terminal Types

There are two basic types of terminals that can connect to IMS. They are:

Static The terminal is specifically defined in the IMS system definition, and this
determines what physical terminal name (NODE NAME), and logical
terminal name (LTERM) is available for use.

Dynamic
The terminal is not statically defined in the IMS system definition. IMS can
create a dynamic terminal definition. This requires either the IMS Extended
Terminal Option (ETO), a separately ordered feature of IMS or other
third-party vendor products. Dynamic terminals have not been previously
defined to IMS — their definitions are generated by ETO when the user
logs on/ signs on.

If a terminal user attempts to connect to IMS using a terminal that is defined to IMS
as static, then the user will use the defined NODE NAME / LTERM name
combination.

If a terminal user attempts to connect to IMS using a terminal that is not defined to
IMS as static, and dynamic terminal support is available, then the dynamic terminal
product (such as ETO) will be used to determine what the LTERM name is; and

whether it is based on the user’'s USERID, the NODE NAME, or some other value.

If a terminal user attempts to connect to IMS using a terminal that is not defined to
IMS as static, and dynamic terminal support is not enabled, then the user will be
unable to logon to IMS.

Input Message Origin

IMS maintains the name of the terminal or user from which an input message is
received. When a message is passed to an application program, this is also made
available to that program, via its program communication block (PCB).

This origin is the logical terminal name (LTERM). The LTERM name may be specific
to the user, or may be specific to the physical location, depending on how the IMS
system is defined. See “Terminal Types.”

Terminal Input Destination

124

The destination of the terminal input is dependent upon the type of input.

An input command goes directly to the IMS command processor modules, while a
message switch or a transaction are stored on the message queue. When a
3270-based message is received by IMS, the message input is first processed by
message format service (MFS), except when input is from previously cleared or
unformatted screen. MFS provides an extensive format service for both input and
output messages. It is discussed in detail in Chapter 20, “The IMS Message Format
Service,” on page 207.

IMS: An Introduction to IMS

IBM Confidential

When the input message is enqueued to its destination in the message queue, the
input processing is completed. If more that one LTERM is defined or assigned to a
physical terminal, they are maintained in a historical chain: the oldest defined or
assigned first. Any input from the physical terminal is considered to have originated
at the first logical terminal of the chain. If, for some reason (such as security or a
stopped LTERM), the first logical terminal is not allowed to enter the message, all
logical terminals on the input chain are interrogated in a chain sequence for their
ability to enter the message. The first appropriate LTERM found is used as
message origin. If no LTERM can be used, the message is rejected with an error
message.

Message Queueing

All full-function input and output messages in IMS are queued in message queues.
See Figure 39 on page 126. For Fast Path transactions, see “Fast Path
Transactions and Message Queues” on page 128.

Chapter 13. How IMS TM Processes Input 125

IBM Confidential

Queue Management Modules

Data
Communication
Modules Queue Buffers
Input | MSG
Message "| TRANID
TeSrtr?mtilr?al Output MSG
Message | LTERM
Input » MSG
Message TRANID
Dynamic
Terminal Output < MSG
Message USERID
h
Message
Queue
Data Sets

Figure 39. Overview of the Message Queuing Process

126

The use of message queues allows input processing, output processing, command
processing, and application program processing to be performed asychronously, to
a large extent. This means, for example, that the input processing of message A
can be done in parallel with the database processing for message B and the output
processing for message C. Messages A, B, and C can be different occurrences of
the same or different message types and/or transaction codes.

Messages in the IMS message queues are stored by destination, priority, and the

time of arrival in IMS. A destination can be:

* A message processing program (MPP), which is for transaction input. Ordering is
by transaction code.

« Alogical terminal (LTERM), which is for a message switch, command responses,
and output generated by application programs.

The message queue buffers are maintained in main storage (defined by the
MSQUEUE macro) unless shared queues are used. If the memory-based message

IMS: An Introduction to IMS

IBM Confidential

queue buffers become full, messages are then stored on the message queue data
sets on DASD. The queue blocks in main storage and on direct access storage are
reusable. As far as possible messages are stored in the message queue buffers, to
minimize the number of I/O operations required during processing.

Queue Size and Performance Considerations

Messages in the IMS message queue are primarily held in buffers in main storage.
However, when messages are added to the queues faster than IMS can process
these messages, the message queue buffers can fill. In this situation, any new
messages are written to the message queue data sets. The performance of these
data sets then becomes very important. The data sets should be on a DASD
volume with fast response times, and the data sets should be appropriately sized to
ensure that there is always space available.

Multiple Message Queues

The IMS Queue Manager supports concurrent /O operations to its message queue
data sets, allowing the IMS message queue to be distributed across multiple
physical queue data sets. This enhancement supports the long and short message
queue data sets.

This function is activated when more than one DD statement per message queue
data set is provided. You can supply up to ten DD statements for each queue data
set. These DD statements can be allocated on different device types, but LRECL
and BLKSIZE must be the same for all the data sets of a single queue.

IBM strongly recommends that multiple queue data sets be used, so that in an
emergency situation, the IMS systems performance will not degrade while trying to
handle a large volume of messages going to and from the message queue data
sets.

Related Reading: See the IMS Version 9: Installation Volume 1: Installation
Verification and IMS Version 9: Installation Volume 2: System Definition and
Tailoring for further detailed guidelines for selecting message queue parameters
such as block sizes, QPOOL size, queue data set allocation and so forth.

Shared Queues

IMS provides the facility for multiple IMS systems in a sysplex to share a single set
of message queues. This function is known as IMS shared queues and the
messages are held in structures in a coupling facility. All the IMS subsystems in the
sysplex share a common set of queues for all non-command messages (that is,
input, output, message switch, and Fast Path messages). A message that is placed
on a shared queue can be processed by any of several IMS subsystems in the
share queues group as long as the IMS has the resources to process the message.

The shared-queues function is optional and you can continue to process with the
non-sysplex message queue buffers and message queue data sets.

The benefits in using shared queues enables automatic workload balancing across
all IMS subsystems in a Sysplex. New IMS subsystems can be dynamically added
to the Sysplex, and share the queues as workload increases, allowing in
incremental growth in capacity The use of shared queues can also provide
increased reliability and failure isolation: if one IMS subsystem in the Sysplex fails,
any of the remaining IMS subsystems can process the work that is waiting in the
shared queues.

Chapter 13. How IMS TM Processes Input 127

IBM Confidential

Related Reading: For more information about IMS and shared queues in a sysplex
environment, see Chapter 30, “Introduction to Parallel Sysplex,” on page 315.

Fast Path Transactions and Message Queues

Fast Path transactions do not use the standard IMS message queues. Fast Path
transactions are scheduled by a separate function within the IMS transaction
manager, called the Expedited Message Handler (EMH). For further scheduling
information, see Chapter 14, “Fast Path Transactions,” on page 135.

APPC Driven Transactions and Message Queues

There are two types of APPC transactions, implicit and explicit. With implicit APPC
transactions, IMS receives a transaction request via APPC. This transaction is
placed onto the IMS message queues in the same way as a 3270-generated
transaction. The message is passed to an MPP for processing, and the response is
routed back to the originating APPC partner. The MPP program uses the DL/I
interface to receive the message from the message queue, and put the response
back onto the message queue.

With explicit APPC transactions, IMS schedules a program into an MPR (message
processing region). This program uses APPC verbs to communicate with the APPC
partner program to process the transaction. The standard IMS messages queues
are not used for explicit APPC transactions.

OTMA Driven Transactions and Message Queues

OTMA allows IMS to receive a message through a different communications
protocol (for example, TCP/IP sockets, MQ, remote procedure calls, IMS Connect,
and so forth). The message is received by IMS, and it placed into the IMS message
queue for processing in the usual manner. The response message is passed back
to the originator through OTMA.

Message Scheduling

128

Scheduling is the loading of the appropriate program into a message processing
region. IMS can then pass messages stored on the IMS message queue to this
program when it issues the Get Unique (GU) IOPCB call. For more information
about application calls, see Chapter 17, “Application Programming Overview,” on
page 149.

Once an input message is available in the message queue, it is eligible for
scheduling. Scheduling is the routing of a message in the input queue to its
corresponding application program in the message processing region. See

Figure 40 on page 129.

IMS: An Introduction to IMS

IBM Confidential

Trans-code A & Message Trans-code B & Message

Linkage defined at IMS system definition
(APPLCTN & TRANSACT Macros)

DB
Control Block

PSB DB
Control Block Control Block

DB
Control Block

Scheduling based
on transaction class

Message Processing Region (MPR)

Figure 40. Message Scheduling

The linkage between an input message (defined by its transaction code) and an

application program (defined by its name) is established at system definition time.
Multiple transaction codes can be linked to a single application program, but only

one application program can be linked to a given transaction code.

The class in which a transaction code with run is defined in two ways:
* On the APPLCTN macro
* On the MSGTYPE parameter of the TRANSACT macro

If the class is specified on the APPLCTN macro, it need not be defined on the
TRANSACT macro. If it is specified on both, then the class on the TRANSACT
macro will override the APPLCTN macro specification. Figure 41 illustrates the
definition of a transaction.

APPLCTN PSB=DFSIVP1,PGMTYPE=TP
TRANSACT CODE=IVTNO,MODE=SNGL, X
MSGTYPE=(SNGLSEG,NONRESPONSE, 1)
APPLCTN PSB=DFSIVP2,PGMTYPE=(TP,1)
TRANSACT CODE=IVTNOZ2,MODE=SNGL, X
MSGTYPE=(SNGLSEG,NONRESPONSE)

Figure 41. Sample APPLCTN Macro Transaction Definition in IMS Stage 1 Input

Notice the following about these transaction definitions:

» Transaction DFSIVP1 has the class defined as the third parameter on the
MSGTYPE parameter on the TRANSACT macro.

¢ Transaction DFSIVP2 has the class defined on the APPLCTN macro.
* Both transactions are assigned to class 1.

Chapter 13. How IMS TM Processes Input

129

IBM Confidential

Transaction Scheduling

The transaction scheduling algorithm can be a very sophisticated algorithm, as it
needs to make use of all the IMS and system resources in the most efficient
manner possible. However, most users do not need to use the power of the
scheduling algorithms, as the resources available in IMS today (such as the number
of message processing regions) are much greater than when these algorithms were
designed several decades ago.

There are a few parameters on the transaction definition which will affect the
scheduling options. These are:

PROCLIM
PARMLIM
MAXRGN
PRTY

Scheduling Conditions

The following conditions must be met for a successful scheduling:

* An MPR region must be available. Actually, the termination of a prior transaction
running in an MPR region triggers the scheduling process.

» There must be a transaction input message in the queue.
* The transaction and its program are not in a stopped state.

« Enough buffer pool storage is available to load the program specification block
(PSB) and the referenced database control blocks if not already in main storage.

* The database processing intent does not conflict with an already active
application program (a BMP for instance). Processing intent is discussed in more
detail in “Database Processing Intent” on page 133.

If the first transaction code with a ready input message does not meet all the above
conditions, the next available input transaction is interrogated, and so forth. If no
message can be scheduled, the scheduling process is stopped until another input
message is enqueued. If the scheduling is successful, the IMS routines in the
dependent region load the corresponding MPP and pass control to it.

Scheduling in a Dependent Region

130

The IMS scheduler will assign the application transaction processing to a dependent
MPR. The number of MPRs available to an IMS system is 999 dependent regions.

The transactions are assigned to classes. The maximum number of transactions
classes is set at system generation time by the MAXCLAS parameter of the
IMSCTRL macro.

Class Processing

Each dependent MPR can run up to four transaction classes. The order in which
they are specified is a priority sequence. That means that the transaction class
named first is the highest and the one named last is the lowest. Each MPR can
have a different sequence of the same or different transaction combinations. The
classes are named on the PROC statement of the JCL running the MPR. Figure 42
on page 131 shows an example of the MPR JCL. The MPR can be run as a JOB or
a started task.

IMS: An Introduction to IMS

IBM Confidential

//IVP6TM11 EXEC PROC=DFSMPR,TIME=(1440),

// AGN=BMPO1, AGN NAME

/! NBA=6,

// 0BA=5,

/! SouUT="+", SYSOUT CLASS

// CL1=001, TRANSACTION CLASS 1

/! CL2=006, TRANSACTION CLASS 2

// CL3=013, TRANSACTION CLASS 3

/! CL4=000, TRANSACTION CLASS 4

! TLIM=10, MPR TERMINATION LIMIT
/! Sop=, SPIN-OFF DUMP CLASS

/! IMSID=IMSY, IMSID OF IMS CONTROL REGION
// PREINIT=DC, PROCLIB DFSINTXX MEMBER
/! PWFI=N PSEUDO=WFI

/1%

Figure 42. Example of MPR PROC Statement

The classes which the MPR runs can be changed while the MPR is running. This is
done through and /ASSIGN command. When the /ASSIGN command is executed,
only those classes specified on the command will be available to that MPR. The
changes will be maintained until the MPR is restarted, at which time the values on
the PROC statement will be used again. Figure 43 illustrates an example of an
/ASSIGN command. Again the order of classes on the command is the priority
sequence of those classes.

/ASSIGN CLASS 1 4 6 9 TO REGION 1

Figure 43. Example of /ASSIGN CLASS Command

To list the classes assigned to an MPR the /DISPLAY ALL command can be used.
Figure 44 shows the /DISPLAY ACTIVE command and the output.

4 N\
/DIS ACTIVE
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS IMSY
1 SJIMSYM1 TP WAITING 1, 4, 6, 9 IMSY
2 SJIMSYM2 TP WAITING 2p & Bp db IMSY
BATCHREG BMP NONE IMSY
FPRGN FP NONE IMSY
DBTRGN DBT NONE IMSY
SJIMSYDB DBRC IMSY
SJIMSYDL DLS IMSY
VTAM ACB OPEN -LOGONS DISABLED IMSY
IMSLU=N/A.N/A APPC STATUS=DISABLED IMSY
OTMA GROUP=IMSCGRP STATUS=ACTIVE IMSY
APPLID=SCSIM6YA GRSNAME= STATUS=DISABLED IMSY
LINE ACTIVE-IN - 1 ACTIV-OUT - 0 IMSY
NODE ACTIVE-IN - 0 ACTIV-0UT - 0 IMSY
*99298/155826+ IMSY
S 99298/155826 S)

Figure 44. Example of /DISPLAY ACTIVE Command

Note the following from the information from Figure 44:

* There are two MPRs.

* The MPR named SJIMSYM1 run classes 1, 4, 6, and 9.
*« The MPR named SJIMSYM2 runs classes 2, 3, 5, 1.

* Class 1 has the highest priority in MPR SJIMSYM1 and the lowest in MPR
SJIMSYM2.

Chapter 13. How IMS TM Processes Input 131

IBM Confidential

When an MPR is looking to find the a transaction to schedule, it will use the
following criteria:

1. The highest priority transaction ready in the highest priority class

2. Any other transaction in the highest priority class

3. The highest priority transaction ready in the second highest priority class
4. Any other transaction in the second priority class

This sequence of priorities will be used for all the available classes for this MPR.

Note: If a transaction has a class for which there are no MPRs currently allowed to
run that class, the transaction will not be scheduled and will remain on the input
queue.

PROCLIM Processing

IMS also tries to increase throughput of the MPR by processing more than one
message for the same transaction. This is to make use of the fact that the program
has already been loaded into the MPR’s storage, and the PSB and DBD control
blocks also have been loaded. This will increase the throughput of the number of
messages processed by this MPR, as it will avoid some of the overhead with
reloading the program and control blocks.

At the completion of the transaction, IMS with check the PROCLIM value on the
TRANSACT macro for this transaction. The MPR will process the number of
messages allowed in the first value of this keyword before looking to see what other
transactions are available to be scheduled. This means the MPR can process more
transactions without having to go through the scheduling logic for each transaction.

Parallel Scheduling

Priority

A transaction will only process in one MPR at a time unless parallel processing is
specified. To allow more than one MPR to schedule a transaction type at a time,
code the SCHDTYP parameter on the APPLCTN macro. For example:

APPLCTN PSB=DFSIVP1,PGMTYPE=(TP,1),SCHDTYP=PARALLEL

Unless there are application restrictions on processing the message in strict first-in,

first-out sequence, parallel scheduling should be applied to all transactions. This will
allow IMS to make the best use of IMS resources while providing the best possible

response time to individual transactions.

The PARMLIM parameter on the TRANSACT macro will determine when a
transaction will be scheduled in another region. When the number of messages on
the queue for this transaction exceeds the value on the PARLIM, another region will
be used.

The MAXRGN parameter is used to restrict the number of MPRs which can process
a transaction at any one time. This is done to avoid the situation of all the MPRs
being tied up by a single transaction type.

The PRTY parameter on the TRANSACT macro sets the priority of a transaction.
This is how to differentiate one transaction from another if they run in the same
transaction class. A transaction of a higher priority will be scheduled before a lower
priority one. However an MPR will process a transaction in a higher class (for this
MPR, see “Scheduling in a Dependent Region” on page 130 for more details)
before a transaction in a lower class regardless of the priority. A transaction priority

132 IMS: An Introduction to IMS

IBM Confidential

will increase once the number of transactions on the message queue exceed the
value set on the third value of the PRTY keyword. It will increase to the value set
on the second parameter of the PRTY keyword. This has the effect of trying to
avoid a long queue on any single transaction code by giving it a higher priority.

Another factor in transaction scheduling is the PROCLIM value. This is discussed in
“PROCLIM Processing” on page 132.

Database Processing Intent

A factor that significantly influences the scheduling process is the intent of an
application program toward the databases it uses. Intent is determined by
examining the intent last associated with the PSB to be scheduled. At initial
selection, this process involves bringing the intent list into the control region. The
location of the intent list is maintained in the PSB directory. If the analysis of the
intent list indicates a conflict in database usage with a currently active program in
MPP or BMP region, the scheduling process will select another transaction and try
again.

The database intent of a program as scheduling time is determined via the
PROCOPT= parameters in the PCB.

An conflicting situation during scheduling will only occur if a segment type is
declared exclusive use (PROCOPT=E) by the program being scheduled and a
already active program references the segment in its PSB (any PROCOPT), or vice
versa.

Scheduling a BMP

A BMP is initiated in a standard z/OS address space via any regular job submission
facility. This could be from either:

* TSO and SUBMITing the job
* Some job scheduling system

However, during its initialization the IMS scheduler in the control region is invoked
to assure the availability of the database resources for the BMP.

Shared Queues

Scheduling of transactions in a shared-queues environment is similar to those in a
non-shared queues environment. All the checks, however, are across all the IMS
systems in the shared-queues environment, and obviously, there are extra
considerations as well.

Related Reading: For further information on scheduling shared queues, see:

* IMS in the Parallel Sysplex: Volume I: Reviewing the IMSplex Technology

* IMS in the Parallel Sysplex: Volume II: Planning the IMSplex

* IMS in the Parallel Sysplex: Volume Ill: IMSplex Implementation and Operations

Chapter 13. How IMS TM Processes Input 133

IBM Confidential

134 IMS: An Introduction to IMS

IBM Confidential

Chapter 14. Fast Path Transactions

Apart from standard IMS transactions, there are two types of Fast Path online
transactions. They are:

* “Fast Path Exclusive Transactions”
* “Fast Path Potential Transactions”

Fast Path Exclusive Transactions

Fast Path schedules input messages by associating them with a load balancing
group. A load balancing group (BALG) is a group of Fast Path input messages that
are ready for balanced processing by one or more copies of a Fast Path program.
One LBG exists for each unique Fast Path message-driven application program.

The messages for each LBG are processed by the same Fast Path program. The
EMH controls Fast Path messages by:

» Managing the complete execution of a message on a first-in-first-out basis.

* Retaining the messages that are received in the control program’s storage
without using auxiliary storage or 1/0 operations.

* Supporting multiple copies of programs for parallel scheduling.
* Requiring that programs operate in a wait-for-input mode.

Fast Path Potential Transactions

Fast Path potential transactions are a mixture of standard IMS full-function and Fast
Path exclusive transactions.

The same transaction code can be used to trigger either a full-function, or a Fast

Path transaction, with an exit used to determine whether this instance of the
transaction will be full-function, or Fast Path.

© Copyright IBM Corp. 2004 135

IBM Confidential

136 IMS: An Introduction to IMS

IBM Confidential

Chapter 15. The Master Terminal

The mission of the Master Terminal Operator (MTO) is to monitor and manage an
individual IMS. As IMSs are joined together into sharing groups (sharing databases,
resources, or message queues), system management becomes more complex.
Prior to IMS Version 8, the IMS systems in sharing groups had to be managed
individually.

IMS Version 8 introduced system management enhancements so that a single IMS
or multiple IMS systems could be monitored and managed from a single point of
control. You can issue commands and receive responses from one, many, or all of
the IMSs in the group from this single point of control. For more information about
these enhancements, see Chapter 31, “IMSplexes,” on page 337.

The master terminal operator (MTO) has the following responsibilities:
* Responsibility for running IMS
The MTO starts and shuts down dependent regions and manages the system
log.
» Knowledge of the ongoing status of the IMS subsystem
The MTO continuously monitors processing and detects any error situations.
» Control over contents of the system and network

The MTO can control the network, connect other IMS systems, and perform other
prearranged tasks.

* Privileged commands

In addition to routine work, the MTO responds to error conditions, changes the
scheduling algorithm, alters passwords, and reconfigures the system as
necessary.

Table 5 shows the actions usually performed by the MTO and the commands
usually reserved for the MTO’s use.

Table 5. Master Terminal Operator Actions and Associated Commands

Activity IMS Command
Activate IMS (cold start) /ERESTART COLDSYS
Start a message region /START REGION IMSMSG1
Start communications lines /START LINE ALL
Display message queues /DISPLAY

Start another message region /START REGION IMSMSG3
Prepare for VTAM communication /START DC

Initiate static VTAM sessions /OPNDST NODE ALL
Initiate dynamic VTAM sessions /OPNDST NODE nodename
Send a message to terminals /BROADCAST

Shut down VTAM terminals and IMS /CHECKPOINT FREEZE QUIESCE
Restart IMS (warm start) /NRESTART

When the IMS system is generated, the IMS master terminal MUST be included,
and consists of two components:

* Primary master

© Copyright IBM Corp. 2004 137

IBM Confidential

» Secondary master

All messages are routed to both the primary and secondary master terminals.
Special MFS support is used for the master terminal.

The following sections of this chapter discuss the tasks of monitoring and managing
an individual IMS using the MTO. The sections are:

* “The Primary Master”

* “The Secondary Master” on page 139

* “Using the z/OS Console as the Master Terminal” on page 139
« “Extended MCS/EMCS Console Support” on page 139

The Primary Master

Traditionally, the primary master was a 3270 display terminal of 1920 characters (24
lines by 80 columns). A sample traditional IMS master terminal is shown in
Figure 45.

03/04/01 14:49:48 IMSC
DFS249 14:43:46 NO INPUT MESSAGE CREATED
DFS9941 COLD START COMPLETED
DFS06531 PROCECTED CONVERSATION PROCESSING WITH RRS/MVS ENABLED
DFS23601 14:29:28 XCF GROUP JOINED SUCCESSFULLY.

PASSWORD:
- v

Figure 45. Master Terminal Screen

The display screen of the master terminal is divided into four areas. They are the:

Message area
The message area is for IMS command output (except /DISPLAY and
/RDISPLAY), message switch output that uses a message output descriptor
name beginning with DFSMO (see MFS), and IMS system messages.

Display area
The display area is for /DISPLAY and /RDISPLAY command output.

Warning message area
The warning message area is for the following warning messages:
* MASTER LINES WAITING
* MASTER WAITING
» DISPLAY LINES WAITING
* USER MESSAGE WAITING

To display these messages or lines, press PA1. An IMS password can also
be entered in this area after the “PASSWORD?” literal.

User input area
The user input area is for operator input.

138 IMS: An Introduction to IMS

IBM Confidential

Program function key 11 or PA2 requests the next output message and program
function key 12 requests the Copy function if it is a remote terminal.

The Secondary Master

Traditionally, the secondary master was a 3270 printer terminal.

This usage has also been phased out in many sites, who now have the secondary
master defined as spooled devices to IMS, in effect writing the messages to
physical data sets.

In this way, the secondary master can be used as an online log of events within
IMS. To accomplish this, the definitions in Figure 46 needs to be put into the IMS
Stage 1 system definition. These definitions need to follow the COMM macro and
before any VTAM terminal definitions.

*

LINEGRP DDNAME=(SPL1,SPL2),UNITYPE=SPOOL
LINE BUFSIZE=1420
TERMINAL FEAT=AUTOSCH
NAME (SEC,SECONDARY)

Figure 46. Sample JCL for the Secondary Master Spool

To complete the definitions, code SPL1 and SPL2 DD statements in the IMS control
region JCL. The data sets should be allocated with the following DCB information:

DCB=(RECFM=VB,LRECL=1404,BLKSIZE=1414)

Using the z/OS Console as the Master Terminal

IMS always has a communications path with the z/OS system console. The
write-to-operator (WTQ) and write-to-operator-with-reply (WTOR) facilities are used
for this. Whenever the IMS control region is active, there is an outstanding message
requesting reply on the z/OS system console. This can be used to enter commands
for the control region. All functions available to the IMS master terminal are
available to the system console. The system console and master terminal can be
used concurrently, to control the system. Usually, however, the system console’s
primary purpose is as a backup to the master terminal. The system console is
defined as IMS line number one by default.

Extended MCS/EMCS Console Support

IMS can be also communicated with using the MCS/EMCS console support.

Any z/OS console can issue a command directly to IMS, using either a command
recognition character (CRC) as defined at IMS startup, or using the 4-character IMS
ID to be able to issue commands.

This interface has the option of using RACF or exit routines for command security.
For further details, see Chapter 24, “IMS Security,” on page 253.

Chapter 15. The Master Terminal 139

IBM Confidential

140 MS: An Introduction to IMS

IBM Confidential

Chapter 16. Application Program Processing for IMS TM

Once an application program is scheduled in a dependent region, it is loaded into
that region by IMS.

The following sections are covered in this chapter:

* “Flow of Message Processing Programs (MPPs)”

* “Role of the PSB” on page 142

* “DL/I Message Calls” on page 142

* “Program Isolation and Dynamic Logging” on page 143
* “Internal Resource Lock Manager (IRLM)” on page 144
» “Abnormal Application Program Termination” on page 144
* “Conversational Processing” on page 145

» “Output Message Processing” on page 145

* “Logging, Checkpointing, and Restarting” on page 145
* “Message Switching” on page 146

Flow of Message Processing Programs (MPPs)

The scheduled program in the MPR is given control after it is loaded. The normal
processing steps of an MPP are described in the list that follows Figure 47 on page
142.

© Copyright IBM Corp. 2004 141

IBM Confidential

Control Region DLI Address Space MPP or BMP Address Space

v

[TRAN |

A

DCPCB [=Get|v|essage|<— GU IOPCB

DBPCB GN IOPCB

A4
DBD » Access DB GU DBPCB

ISRT DBPCB
REPL DBPCB
DLET DBPCB

»| Send Reply ISRT IOPCB
A A A 4
Message Queue DBD

Buffer Pool Buffer Pool
A y
A4 v
DBD
Buffer Pool
Message Databases
Queue
Data Sets

Figure 47. Overview of Basic Flow Through a MPP or BMP Address Space

Retrieve the input message by using a DL/l message call.
Check the input message for syntax errors.
Process the input message, requesting necessary IMS database accesses.

Send output to the originating and/or other (for example, printer) logical
terminals by using DL/l message calls.

5. Retrieve the next input message or terminate.

poODdN -~

Role of the PSB

The program specification block (PSB) for an MPP or a BMP contains, one or more
PCBs for logical terminal linkage, in addition to database PCBs. The very first PCB
always identifies the originating logical terminal (IOPCB). This PCB must be
referenced in the get unique (GU) and get next (GN) message calls. It must also be
used when inserting output messages to that LTERM. In addition, one or more
alternate output PCBs can be defined. Their LTERM destinations can be defined in
the PCBs or set dynamically with change destination calls.

DL/l Message Calls

The same DL/I language interface that is used for the access of databases is used
to access the message queues.

The principal DL/I message call function codes are:

142 MS: An Introduction to IMS

IBM Confidential

GU (get unique)
This call must be used to retrieve the first, or only, segment of the input
message.

GN (get next)
This call must be used to retrieve second and subsequent message
segments.

ISRT (insert)
This call must be used to insert an output message segment into the output
message queue. Note: These output message(s) will not be sent until the
MPP terminates or requests another input message by using a get unique
call.

CHNG (change destination)
This call can be used to set the output destination for subsequent insert
calls.

Program Isolation and Dynamic Logging

When processing DL/l database calls, the IMS program isolation function will
ensure database integrity.

With program isolation, all activity (database modifications and message creation) of
an application program is isolated from any other application programs running in
the system until an application program commits, by reaching a synchronization
point, the data it has modified or created. This ensures that only committed data
can be used by concurrent application programs. A synchronization point is
established with a get unique call for a new input message (single mode) and/or a
checkpoint call (BMP only), or program normal termination (GOBACK or RETURN).

Program isolation allows two or more application programs to concurrently execute
with common data segment types even when processing intent is segment update,
add, or delete. This is done by a dynamic enqueue/dequeue routine which
enqueues the affected database elements (segments, pointers, free space
elements, etc.) between synchronization points.

At the same time, the dynamic log modules log the prior database record images
between those synchronization points. This makes it possible to dynamically back
out the effects of an application program that terminates abnormally, without
affecting the integrity of the databases controlled by IMS. It does not affect the
activity of other application program(s) running concurrently in the system.

With program isolation and dynamic backout, it is possible to provide database
segment occurrence level control to application programs. A means is provided for
resolving possible deadlock situations in a manner transparent to the application
program.

One example of a deadlock occurs in the following sequence of events:

1. Program A updates database element X.

2. Program B updates database element Y.

3. Program A requests Y and must wait for the synchronization point of program B.
4

Program B in turn requests X and must wait for the synchronization point of
program A.

Chapter 16. Application Program Processing for IMS TM 143

IBM Confidential

A deadlock has now occurred: both programs are waiting for each other’s
synchronization point. The dynamic enqueue/dequeue routines of IMS intercept
possible deadlocks during enqueue processing (in the above example, during
enqueue processing of event 4).

When a deadlock situation is detected, IMS abnormally terminates (pseudo abends)
one of the application programs involved in the deadlock. The activity of the
terminated program is dynamically backed out to a previous synchronization point.
Its held resources are freed. This allows the other program to process to
completion. The transaction that was being processed by the abnormal terminated
program is saved. The application program is an MPP, it is rescheduled. For a BMP
region, the job must be restarted. This process is transparent to application
programs and terminal operators.

There are two situations where the enqueue/dequeue routines of program isolation
are not used in processing a database call:

* If PROCOPT=GO (read only) is specified for the referenced segment (s) of the
call.

» If PROCOPT=E (exclusive) is specified for the referenced segment (s) in the call.

Notice that possible conflicts with exclusive extent are resolved during scheduling
time and, as such, cannot occur at call time.

Notes:

1. With the GO option, a program can retrieve data which has been altered or
modified by another program still active in another region, and database
changes made by that program are subject to being backed out.

2. Exclusive intent may be required for long-running BMP programs that do not
issue checkpoint calls. Otherwise, an excessively large enqueue/dequeue table
in main storage may result.

3. Even when PROCOPT=E is specified, dynamic logging will be done for
database changes. The ultimate way to limit the length of the dynamic log chain
in a BMP is by using the XRST/CHKP calls. The chain is deleted at each CHKP
call because it constitutes a synchronization point.

4. If one MPP and one BMP are involved in a deadlock situation, the MPP will be
subject to the abnormal termination, backout, and reschedule process.

Internal Resource Lock Manager (IRLM)

When IMS is involved in a data-sharing environment with other IMS systems, IRLM
is used instead of program isolation for lock management. See “Internal Resource
Lock Manager (IRLM)” on page 21 for further details.

Abnormal Application Program Termination

144

When a message or batch-message processing application program is abnormally
terminated for other reasons than deadlock resolution, internal commands are
issued to prevent rescheduling. These commands are the equivalent of a /STOP
command. They prevent continued use of the program and the transaction code in
process at the time of abnormal termination. The master terminal operator can
restart either or both stopped resources.

At the time abnormal termination occurs, a message is issued to the master
terminal and to the input terminal that identifies the application program, transaction
code, and input terminal. It also contains the system and user completion codes. In

IMS: An Introduction to IMS

IBM Confidential

addition, the first segment of the input transaction, in process by the application at
abnormal termination, is displayed on the master terminal. The database changes
of a failing program are dynamically backed-out. Also, any of its output messages
that were inserted in the message queue since the last synchronization point are
cancelled.

Conversational Processing

A transaction code can be defined as belonging to a conversational transaction
during IMS system definition. If so, an application program that processes that
transaction, can interrelate messages from a given terminal. The vehicle to
accomplish this is the scratch pad area (SPA). A unique scratch pad area is created
for each physical terminal which starts a conversational transaction. Each time an
input message is entered from a physical terminal in conversational mode, its SPA
is presented to the application program as the first message segment (the actual
input being the second segment).

Before terminating or retrieving another message (from another terminal), the
program must return the SPA to the control region with a message ISRT call. The
first time a SPA is presented to the application program when a conversational
transaction is started from a terminal, IMS will format the SPA with binary zero’s
(X'00"). If the program wants to terminate the conversation, it can indicate this by
inserting a blank transaction code into the SPA.

Output Message Processing

As soon as an application reaches a synchronization point, its output messages in
the message queue become eligible for output processing. A synchronization point
is reached whenever the application program terminates or requests a new
message/SPA from the input queue via a GU call.

In general, output messages are processed by the Message Format Service (MFS)
before they are transmitted via the telecommunications access method.

Different output queues can exist for a given LTERM, depending on the message
origin. They are, in transmission priority:

1. Response messages, that is, messages generated as a direct response (same
PCB) to an input message from this terminal.

2. Command responses.
3. Alternate output messages, messages generated via an alternate PCB.

Logging, Checkpointing, and Restarting

To ensure the integrity of its databases and message processing, IMS uses logging
and checkpoint/restart processing. In case of system failure, either software or
hardware, IMS can be restarted. This restart includes the repositioning of users’
terminals, transactions, and databases.

Related Reading: For further information on IMS logging facilities, see Chapter 25,
“IMS Logging,” on page 257.

At regular intervals during IMS execution, checkpoints are written to the logs. This
limits the amount of reprocessing required in the case of an emergency restart. A

Chapter 16. Application Program Processing for IMS TM 145

IBM Confidential

checkpoint is taken after a specified number of log records are written to the log
tape after a checkpoint command. A special checkpoint command is available to
stop IMS in an orderly manner.

A special disk restart data set is used to record the checkpoint identification and log
tape volume serial numbers. This restart data set (IMS.RDS) is used during restart
for the selection of the correct restart checkpoint and restart logs.

Message Switching

146

A message switch is when a user wishes to send a message to another user. The
basic format of a message switch is the destination LTERM name followed by a
blank and the message text.

A program-to-program switch or program-to-program message switch is a program
that is already executing that requests a new transaction be put on the IMS
message queues for standard scheduling and execution.

This second transaction can:

* Continue the processing of the first transaction (which, in this case, has probably
terminated), and respond (if required) to the originating terminal, which is
probably still waiting for a response.

* Be a second transaction, purely an offshoot from the first, without any

relationship or communications with the originating terminal. In this case, the
original transaction must respond to the terminal, if required.

IMS: An Introduction to IMS

IBM Confidential

Chapter 17. Application Programming Overview

This chapter explains the basics for any programming running in an IMS
environment.

IMS programs (online and batch) have a different structure than non-IMS programs
(see “Program Structure”). An IMS program is always called as a subroutine of the
IMS region controller. It also has to have a program specification block (PSB)
associated with it. The PSB provides and interface from the program to IMS
services which the program needs to make use of. These services can be:

* Sending or receiving messages from online user terminals
» Accessing database records

* Issuing IMS commands

* Issuing IMS service (checkpoint or sync) calls

The IMS services available to any program are determined by the IMS environment
in which the application is running.

The following sections are covered in this chapter:

+ “Java Programs”

* “Program Structure”

* “IMS Setup for Applications” on page 156

* “IMS Database Application Programming Interface” on page 160
* “IMS Application Calls” on page 161

* “IMS/DB2 Resource Translate Table” on page 161

* “IMS System Service Calls” on page 162

Java Programs

IMS Java application support (hereafter called IMS Java) allows you to write Java
application programs that access IMS databases from IMS, IBM WebSphere
Application Server for z/OS and 0S/390, IBM CICS Transaction Server for z/OS, or
IBM DB2 Universal Database™ for z/OS stored procedures.

Related Reading: For more information about IMS Java application programs, see
Chapter 21, “Application Programming in IMS Java,” on page 223.

Program Structure

During initialization, both the application program and its associated PSB are loaded
from their respective libraries by the IMS system. The IMS modules interpret and
execute database CALL requests issued by the program. These modules may
reside in the same or different z/OS address spaces depending on the environment
in which the application program is executing.

Application programs executing in an online transaction environment are executed
in a dependent region called the message processing region (MPR) or Fast Path
region (IFP). The programs are often called message processing programs (MPP).
The IMS modules that execute online services will run in the control region while
the full-function database services will run in the DLI separate address space
(DLISAS). The association of the application program and the PSB is defined at
IMS system generation time via the APPLTN and TRANSACTION macros.

© Copyright IBM Corp. 2004 149

150

IBM Confidential

Batch application programs can execute in two different types of regions.

» Application programs which need to make use of message processing services
or databases being used by online systems are executed in a batch message
processing region (BMP).

» Application programs which can execute without messages services execute in a
DLI batch region.

For both these types of batch application programs, the association of the
application program to the PSB is done on the PARM keyword on the EXEC
statement.

The application program interfaces with IMS by using the following program
elements:

* An ENTRY statement specifying the PCBs utilized by the program (see “Entry to
the Application Program” on page 151)

» A PCB-mask which corresponds to the information maintained in the
pre-constructed PCB and which receives return information from IMS (see “PCB
Mask” on page 151)

* An I/O area for passing data segments to and from the databases

» Calls to DL/I specifying processing functions (see “Calls to IMS” on page 155)
» Status code processing (see “Status Code Processing” on page 156)

* A termination statement (see “Termination of the Application” on page 156)

The PCB mask(s) and I/O areas are described in the program’s data declaration
portion. Program entry, calls to IMS processing, and program termination are
described in the program’s procedural portion. Calls to IMS, processing statements,
and program termination can reference PCB mask(s) and/or 1/O areas. In addition,
IMS can reference these data areas. Figure 48 on page 151 illustrates how these
elements are functionally structured in a program and how they relate to IMS.

The individual program elements mentioned in the previous list, are discussed in
the sections that follow Figure 48 on page 151.

IMS: An Introduction to IMS

IBM Confidential

DLI Modules Application Program
Entry —
» PROGRAM ENTRY
PCB Mask » DEFINE PCB AREAS
i GET INPUT RECORDS FROM INPUT FILE
Call info
from DLI « » CALLS TO DL/I DB FUNCTIONS
RETRIEVE
INSERT
10 AREA
REPLACE
Segments
to and from < DELETE
Databases
» CHECK STATUS CODES
PUT OUTPUT RECORDS
TERMINATION
Exit <

Figure 48. Structure of an IMS Application Program

Entry to the Application Program

PCB Mask

Referring to Figure 48, when the operating system gives control to the IMS control
facility, the IMS control program eventually passes control to the application
program (through the entry point as defined below). At entry, all the PCB-names
used by the application program are specified. The order of the PCB-names in the
entry statement must be the same as in the PSB for this application program. The
sequence of PCBs in the linkage section or declaration portion of the application
program need not be the same as in the entry statement.

Notes:

1. Batch DL/l programs cannot be passed parameter information using the PARM
field from the EXEC statement.

2. TP PCBs must proceed database PCBs in the PSB.

A mask or skeleton database PCB structure is used by the application program to
access data from a TP or database PCB. One PCB is required for each view of a
database or online service. The program views a hierarchical data structure by
using this mask.

Chapter 17. Application Programming Overview 151

Application Program

IBM Confidential

One PCB is required for each data structure. An example of a database PCB mask
is shown in Figure 50 on page 153 and explained in the text that follows the figure.
An example of an TP PCB mask is shown in Figure 52 on page 155.

As the PCB does not actually reside in the application program, care must be taken
to define the PCB mask as an assembler dsect, a COBOL linkage section entry, or
a PL/I based variable.

The PCB provides specific areas used by IMS to inform the application program of
the results of its calls. At execution time, all PCB entries are controlled by IMS.
Access to the PCB entries by the application program is for read-only purposes.
The PCB masks for an TP PCB and a database PCB are different. An example of
both are shown in Figure 49.

Application Data
Structure
Part
el PCB
MASK
STOCK ORDER
y
01 PCBNAME Bytes Function

02 DBD-NAME PICTURE X (8) .\\
02 SEG-LEVEL PICTURE XX.—_| 8 Database Name

JUSTIFIED RIGHT. T2 Segment Hierarchy level indicator
02 STATUS-CODE PICTURE XX.\\
02 PROC-OPTIONS PICTURE XXXX . 2 DL/l result Status Code
02 RESERVE-DLI PICTURE S9(5). \ 4 DL/l Processing Options

COMPUTATIONAL.
07 SEG-NAME-FB PTICTURE X (8) .,_/’» 8 Segment Name Feedback Area
02 LENGTH-FB-KEY PICTURE S9(5) .——— 5 4 Length of Feedback Key Area

COMPUTATIONAL.
02 NUMB-SENS-SEGS PICTURE S9(5) .7 ——>» 4 Number of Sensitive Segments
02 KEY-FB-AREA PICTURE X (l’l) T n Key Feedback Area

Mask Written in COBOL
(Linkage Section)

Figure 49. Application PCB Structure

Database PCB Mask
Figure 50 on page 153 shows an example of a DLI program’s PCB mask, which
defines the PCB area used by IMS to return the results of the call.

152 IMS: An Introduction to IMS

IBM Confidential

01 PCBNAME.
02 DBD-NAME PICTURE X(8).
02 SEG-LEVEL PICTURE XX.
02 STATUS-CODE PICTURE XX.

02 PROC-OPTIONS PICTURE XXXX.
02 RESERVED-DLI PICTURE S9(5).
02 SEG-NAME PICTURE X(8).
02 LENGTH-FB-KEY PICTURE S9(5).
02 NUMB-SENS-SEGS ~ PICTURE S9(5).
02 KEY-FB-AREA PICTURE X(n).

Figure 50. Example of a Database Application PCB Mask

The following items comprise a PCB for a hierarchical data structure from a
database:

Name of the PCB
This is the name of the area which refers to the entire structure of PCB
fields. It is used in program statements. This name is not a field in the PCB.
It is the 01 level name in the COBOL mask inFigure 50.

Name of the database
This is the first field in the PCB and provides the DBD name from the
library of database descriptions associated with a particular database. It
contains character data and is eight bytes long.

Segment hierarchy level indicator
IMS uses this area to identify the level number of the last segment
encountered which satisfied a level of the call. When a retrieve is
successfully completed, the level number of the retrieved segment is placed
here. If the retrieve is unsuccessful, the level number returned is that of the
last segment that satisfied the search criteria along the path from the root
(the root segment level being ‘01’) to the desired segment. If the call is
completely unsatisfied, the level returned is ‘00’. This field contains
character data: it is two bytes long and is a right-justified numeric value.

DL/l status code
A status code indicating the results of the DL/I call is placed in this field and
remains here until another DL/I call uses this PCB. This field contains two
bytes of character data. When a successful call is executed, DL/I sets this
field to blanks or to an informative status indication. A complete list of DL/I
status codes can be found in the IMS Version 9: Messages and Codes,
Volume 1.

DL/l processing options
This area contains a character code which tells DL/I the “processing intent”
of the program against this database (that is, the kinds of calls that may be
used by the program for processing data in this database). This field is four
bytes long. It is left-justified. It does not change from call to call. It gives the
default value coded in the PCB PROCOPT parameter, although this value
may be different for each segment. DL/I will not allow the application to
change this field, nor any other field in the PCB.

Reserved area for IMS
IMS uses this area for its own internal linkage related to an application
program. This field is one fullword (4 bytes), binary.

Segment name feedback area
IMS fills this area with the name of the last segment encountered which
satisfied a level of the call. When a retrieve call is successful, the name of
the retrieved segment is placed here. If a retrieve is unsuccessful, the name

Chapter 17. Application Programming Overview 153

IBM Confidential

returned is that of the last segment, along the path to the desired segment,
that satisfied the search criteria. This field contains eight bytes of character
data. This field may be useful in GN calls. If the status code is ‘Al' (data
management open error), the DD name of the related data set is returned
in this area.

Length of key feedback area

This entry specifies the current active length of the key feedback area
described below. This field is one fullword (4 bytes), binary.

Number of sensitive segments

This entry specifies the number of segment types in the database to which
the application program is sensitive. This would represent a count of the
number of segments in the logical data structure viewed through this PCB.
This field is one fullword (4 bytes), binary.

Key feedback area

IMS places in this area the concatenated key of the last segment
encountered which satisfied a level of the call. When a retrieve is
successful, the key of the requested segment and the key field of each
segment along the path to the requested segment are concatenated and
placed in this area. The key fields are positioned from left to right, beginning
with the root segment key and following the hierarchical path. When a
retrieve is unsuccessful, the keys of all segments along the path to the
requested segment, for which the search was successful, are placed in this
area. Segments without sequence fields are not represented in this area.

Note: This area is never cleared, so it should not be used after a
completely unsuccessful call. It will contain information from a previous call.
See Figure 51 for an illustration of concatenated keys.

Sequence Key ———— 01001020

PART

01001020 —Concatenated Key

STOCK
KBL07010001

"01001020"+"KBL07010001"=
01001020KBL0701001

ORDER
75456-01 "01001020"+"75456-01"=
0100102075456-01
DETAIL
03 "01001020"+"75456-01"+"03"=
0100102075456-0103

Figure 51. Examples of Concatenated Keys

TP PCB Mask

Figure 52 on page 155 shows an example of an online program’s PCB mask, which
defines the PCB area used by IMS to return the results of the call.

154 IMS: An Introduction to IMS

IBM Confidential

Calls to IMS

01 PCBNAME.
02 DBD-NAME PICTURE X(8).
02 SEG-LEVEL PICTURE XX.
02 STATUS-CODE PICTURE XX.

02 PROC-OPTIONS PICTURE XXXX.
02 RESERVED-DLI PICTURE S9(5).
02 SEG-NAME PICTURE X(8).
02 LENGTH-FB-KEY PICTURE S9(5).
02 NUMB-SENS-SEGS ~ PICTURE S9(5).
02 KEY-FB-AREA PICTURE X(n).

Figure 52. Example of an Online Application PCB Mask

Actual processing of IMS messages, commands, databases and services are
accomplished using a set of input/output functional call requests. A call request is
composed of a CALL statement with an argument list. The argument list will vary
depending on the type of call to be made.The argument list will consists of the
following parameters:

* Function call

* PCB name

* /O area

» Segment search argument (SAA) (database calls only)

Table 6 shows a brief explanation of the argument list items. The argument list
items for database processing are discussed in more detail in Chapter 18,
“Application Programming for the IMS Database Manager,” on page 165. The online
services and commands argument list items are discussed in more detail in
Chapter 19, “Application Programming for the IMS Transaction Manager,” on page
197.

Table 6. IMS Call Argument List

Application

Component Description

Function Identifies the DL/I function to be performed. This argument is the
name of the four character field which describes I/O operation. The
DL/l functions are described in the individual chapters

PCB name The name of the database program communication block (PCB). It
is the name of the PCB within the PSB that identifies which specific
data structure the application program wishes to process. The PCB
is defined in more detail in “PCB Mask” on page 151

I/O area The name of a I/O work area. This is an area of the application

program into which DL/l puts a requested segment, or from which
DL/I takes a designed segment. If this a common area is used to
process multiple calls it must be long enough to hold the longest

path of segments to be processed

SSA1...SSAn The names of the Segment Search Arguments (SSAs). These are
optional depending on the type of call issued. Used only used for
database calls. The SSA provides information to define the segment
to be retrieved or written.

Chapter 17. Application Programming Overview 155

IBM Confidential

Status Code Processing

After each IMS call, a two-byte status code is returned in the PCB which is used for
that call. There are three categories of status codes:

« The blank status code, indicating a successful call

* Exceptional conditions and warning status codes from an application point of
view

« Error status codes, specifying an error condition in the application program
and/or IMS

The grouping of status codes in the above categories is somewhat installation
dependent. This book, however, will give a basic recommendation after each
specific call function discussion. It is also recommended that you use a standard
procedure for status code checking and the handling of error status code. The first
two categories should be handled by the application program after each single call.
Figure 53 gives an example using COBOL.

CALL 'CBLTDLI' USING

IF PCB-STATUS EQ 'GE' PERFORM PRINT-NOT-FOUND.
IF PCB STATUS NE 'bb' PERFORM STATUS-ERROR.
everything okay, proceed...

Figure 53. Example of a COBOL Application Program Testing Status Codes

Notice that it is more convenient to directly test the regular exceptions in-line
instead of branching to a status code check routine. In this way, you clearly see the
processing of conditions that you wish to handle from an application point of view,
leaving the real error situations to central status code error routine.

Termination of the Application

At the end of the processing of the application program, control must be returned to
the IMS control program. The following list shows examples of the termination

statements.

Language Return Statement
Java return;

COBOL GOBACK.

PLI RETURN;

ASSEMBLER RETURN(14,12),RC=0

Warning: Returning to IMS causes storage that was occupied by your program to
be released because IMS links to your application program. Therefore you should
close all non-DL/I data sets for COBOL and Assembler before return, to prevent
abnormal termination during close processing by z/OS. PL/I automatically causes all
files to be closed upon return.

IMS Setup for Applications

Before you can run an application program under IMS, control blocks must be
defined and generated. The following sections cover this topic.
* “IMS Control Blocks” on page 157

» “Generating IMS Control Blocks” on page 158

156 IMS: An Introduction to IMS

IBM Confidential

IMS Control Blocks

A program specification block generation (PSBGEN) must be performed to create
the program specification block (PSB) for the application program before the
program can be run. The PSB contains one PCB for each DL/I database (logical or
physical) the application program will access. The PCBs specify which segments
the program will use and the kind of access (retrieve, update, insert, delete) the
program is authorized to. The PSBs are maintained in one or more IMS system
libraries called a PSBLIB library.

All IMS databases require a database descriptor block (DBD) created to have
access to any IMS databases. The details of these control blocks are describe in
“Generating IMS Control Blocks” on page 158. The database DBD is assembled
into a system library called a DBDLIB.

The IMS system needs to combine and expand the PSB and DBD control blocks
into an internal format called access control blocks (ACBs). The Application Control
Blocks Maintenance Ultility is used to create the ACBs.

In a batch DLI environment, the ACB blocks are either built dynamically at step
initialization time (as specified in the DLIBATCH procedure) or the ACB blocks are
built by running the ACB maintenance utility (as specified in the DBBBATCH
procedure). In an online environment, the ACB blocks need to be created before an
application can be scheduled and run. The ACB utility is run offline and the resulting
control blocks are placed in an ACB library.

The IMS system needs to access these control blocks (DBDs and PSBs) in order to
define the applications use of the varies IMS resources required. Depending on
which environment the application program is executed in will determine how IMS
accesses those control blocks. See Figure 54 on page 159 to see a overview of the
processing.

The Transaction Processing (TP) PCB
Besides the default TP PCB, that does not require PCB statement, additional PCBs
can be coded. These PCBs are used to insert output messages to:

* LTERMSs other than the LTERM which originated the input message. A typical use
of an alternate PCB is to send output to a 3270 printer terminal.

* A non-conversational transaction.
¢ Another USERID.

The destination of the output LTERM can be set in two ways:
» During PSBGEN by specifying the LTERM/TRANNAME in a alternate PCB.

* Dynamically by the MPP during execution, by using a change call against a
modifiable alternate PCB.

The method used depends on the PCB statement.

The PCB Statement: This is the only statement required to generate an alternate
PCB (multiple occurrences are allowed). Its format is:

PCB TYPE=TP,LTERM=name,MODIFY=YES

The following list describes the possible parameters.
Keyword Description
TYPE=TP Required for all alternate PCBs.

Chapter 17. Application Programming Overview 157

IBM Confidential

LTERM=name Specifies this PCB is pointing at a known LTERM
defined in the IMS system. The name is optional.
MODIFY=YES If the modify is specified then the LTERM name

may be changed by a CHANGE call within the
application program.

Note: If MODIFY=YES is specified, the MPP must
specify a valid alternate output LTERM with a
change call before inserting any message via this
PCB.

The Database PCB

The DB PCB for an MPP or BPP can be simple or complex. As compared to the TP
PCB, two additional processing intent options can be specified with the PROCOPT=
keyword of the PCB and/or SENSEG statement.

Here’s an example of a simple database PCB:

PCB TYPE=DB,
DBDNAME=EXCEPTA,
PROCOPT=A,
KEYLEN=24

SENSEG NAME=QBO1,
PARENT=0

In the previous example:

TYPE=DB
Required for all DB PCBs

DBDNAME=name
Specifies the database that this PCB is pointing to

PROCOPT=
Processing options

KEYLENGTH=
The length of the concatenated keys for this database

SENSEG
the SENSEG statement with the database PCB statement to define a
hierarchically related set of data segments

Related Reading: For more information about generating these control blocks, see
the IMS Version 9: Utilities Reference: System.

Generating IMS Control Blocks

158

In addition to database PCBs, a PSB for MPPs or BMPs contains one or more data
communication PCBs.

The order of the PCBs in the PSB must be:
1. Data communication PCBs

2. Database PCBs

3. GSAM PCBs (not allowed for MPPs)

One data communication PCB is always automatically included by IMS at the
beginning of each PSB of an MPP or BMP. This default data communication PSB is
used to insert output messages back to the originating LTERM or USERID.

IMS: An Introduction to IMS

IBM Confidential

Note: One data communication PCB is always automatically included by IMS at the
beginning of each PSB of an MPP or BMP. This default data communication PSB is
used to insert output messages back to the originating LTERM or USERID.

DBD Source PSB Source
Library Library
Assemble and Batch Assemble and
Link Edit » Application Link Edit
(DBDGEN) (DLI) (PSBGEN)

DBDLIB PSBLIB

Assemble and
> Link Edit <
(ACBGEN)
Batch
Application [« ACBLIB
(DBB)
IMS Control
Region
A4 A4 A 4 A4 A4
IMS Batch Online Fast Path Java Java
Application Application Application Application Application
(BMP) (MPP) (IFP) (JBP) (JMP)

Figure 54. IMS Control Block Generation and Usage

Note: Multiple BUILD statements can be coded for both DBDs and PSBs, but the
ones for DBDs must be first.

Generating PSBs
The PSBGEN statement is basically the same as for a database PCB. The
IOEROPN= parameter must be omitted, the COMPAT=YES parameter is ignored.

Chapter 17. Application Programming Overview 159

IBM Confidential

Generating ACBs

Before PSBs and DBDs can be used by the control region, they must be expanded
to an internal control block format. This expansion is done by the application control
block generation (ACBGEN) utility. The expended control blocks are maintained in
the IMS. ACBLIB. This is a standard z/OS partitioned data set. JCL Requirements.

An ACBGEN procedure is placed in IMS.PROCLIB during IMS system definition.

Note: Multiple BUILD statements can be coded for both DBDs and PSBs, but the
ones for DBDs must be first.

Additional Application Processing Intent Options
The PROCOPT= keyword is extended with two additional processing intent options,
“O” AND “E”. Their meanings are:

o Read only: no dynamic enqueue is done by program isolation for calls
against this database. Can be specified with only the G intent option, as
GO or GOP. This option is only valid for the PCB statement.

CAUTION:

If the ‘O’ option (read-only) is used for a PCB, IMS does not check the
ownership of the segments returned. This means that the read-only
user might get a segment that had been updated by another user. If
the updating user should then abnormal terminate, and he backed out,
the read-only user would have a segment that did not (and never did)
exist in the database. Therefore, the ‘O’ option user should not
perform updates based on data read with that option. An ABEND can
occur with PROCOPT=GO if another program updates pointers when
this program is following the pointers. Pointers are updated during
insert, delete and backout functions.

E Forces exclusive use of this database or segment by the MPP/BMP. No
other program which references this database/segment will be scheduled in
parallel. No dynamic enqueue by program isolation is done, but dynamic
logging of database updates will be done. E can be specified with G, |, D,
B, and A.

IMS Database Application Programming Interface

160

IMS provides a standard set of functions to allow applications to access and
manipulate data managed by the IMS Database Manager. These functions also
allow applications to access and process messages managed by the IMS
Transaction Manager and to perform certain system functions.

Calls to these functions can be made in a number of ways:

» Alanguage specific call interface. There is one for each programming language
that IMS applications can be written in.

* Alanguage independent call interface for applications written in any language
that supports IBM’s language environment product.

» The application interface block (AIB) call interface.

» For CICS applications that access IMS databases, the application can use the
CICS command level interface to provide IMS DB support.

* REXX EXECs can invoke IMS functions by using the IMS adaptor for REXX

IMS: An Introduction to IMS

IBM Confidential

IMS Application Calls
The following list describes the calls that IMS applications can use.

Get Unique (GU)
The GU (get unique) call is used to retrieve a specific segment or path of
segments from a database. At the same time it establishes a position in a
database from which additional segments can be processed in a forward
direction.

Get Next (GN)
The GN (get next) call is used to retrieve the next or path of segments from
the database. The get next call normally moves forward in the hierarchy of
a database from the current position. It can be modified to start at an earlier
position than current position in the database through a command code, but
its normal function is to move forward from a given segment to the next
desired segment in a database.

Hold Form of Get Calls
GHU (get hold unique), or GHN (get hold next), indicates the intent of the
user to issue a subsequent delete or replace call. A get hold call must be
issued to retrieve the segment before issuing a delete or replace call.

Insert (ISRT)
The ISRT (insert) call is used to insert a segment or a path of segments
into a database. It is used to initially load segments in databases, and to
add segments in existing databases.

To control where occurrences of a segment type are inserted into a
database, the user normally defines a unique sequence field in each
segment. When a unique sequence field is defined in a root segment type,
the sequence field of each occurrence of the root segment type must
contain a unique value. When defined for a dependent segment type, the
sequence field of each occurrence under a given physical parent must
contain a unique value. If no sequence field is defined, a new occurrence is
inserted after the last existing one.

Delete (DLET)
The DLET (delete) call is used to delete a segment from a database. When
a segment is deleted from a DL/I database, its physical dependents, if any
are also deleted.

Replace (REPL)
The REPL (replace) call is used to replace the data in the data portion of a
segment or path of segments in a database. Sequence fields cannot be
changed with a replace call.

System Service Calls
In addition to the functions above, used to manipulate the data, there are a
number of system service calls provided to allow the application to make
use of other facilities provided by IMS. These system service calls are
described in Table 7 on page 162 and Table 8 on page 163.

IMS/DB2 Resource Translate Table

When an IMS transaction accesses DB2, the plan name used is, by default, the
same as the PSB/APPLCTN name.

It is, however, possible to set up a translation table, the RTT, that translates an
APPLCTN to a different DB2 plan name.

Chapter 17. Application Programming Overview 161

IBM Confidential

This is described in the DB2 (not IMS) documentation for attaching DB2 to IMS.
See Defining DB2 Plans for IMS Applications in DB2 for z/OS Installation Guide. It
is simply a table of macros, associating APPLCTN macros with DB2 plan names.
This is assembled in a CSECT (with the name the same as the label of the 1st
macro in the table). This must then be placed in an APF authorized library in the
IMS.SDFSRESL concatenation of the IMS control region. The RTT is pointed to in
the PROCLIB member that defines the DB2 attachment. If the RTT parameter is
null, the RTT is not used.

The re-assembled table will be picked up the next time IMS is stopped/started or
when a stop (/STO SUBSYS xxxx) and restart (/STA SUBSYS xxxx) of the DB2
connection.

IMS System Service Calls

Table 7 and Table 8 on page 163 contain summaries of the IMS system service
calls that application programs can use in the DB and TM environments.

Related Reading: For complete information about the IMS system service calls,
see:

* IMS Version 9: Application Programming: Database Manager
* IMS Version 9: Application Programming: Transaction Manager

Table 7. Summary of IMS DB System Service Calls

Function Code Meaning and Use Options Valid for

CHKP (Basic) Basic checkpoint; prepares None DB batch, TM batch, BMP,
for recovery MPP, IFP

CHKP (Symbolic) Symbolic checkpoint; Specifies up to seven DB batch, TM batch, BMP
prepares for recovery program areas to be saved

GMSG Retrieves a message from Wiaits for an AOl message DB/DC and DCCTL (BMP,
the AO exit routine when none is available MPP, IFP), DB/DC and

DBCTL (DRA thread),
DBCTL (BMP non-message
driven), ODBA

GSCD' °on page 163 Gets address of system None DB Batch, TM Batch
contents directory
ICMD Issues an IMS command and None DB/DC and DCCTL (BMP,
retrieves the first command MPP, IFP), DB/DC and
response segment DBCTL (DRA thread),
DBCTL (BMP non-message
driven), ODBA
INIT Initialize; application receives Checks each PCB DB batch, TM batch, BMP,
data availability and deadlock database for data MPP, IFP, DBCTL, ODBA
occurrence status codes availability
INQY Inquiry; returns information Checks each PCB DB batch, TM batch, BMP,
and status codes about 1/0O database for data MPP, IFP, ODBA
or alternate PCB destination availability; returns
type, location, and session information and status
status codes about the current
execution environment
LOGH* °on page 163 Log; writes a message to the None DB batch, TM batch, BMP,
system log MPP, IFP, DBCTL, ODBA
PCBp* on page 163 Specifies and schedules None CICS (DBCTL or DB/DC)

another PSB

162 IMS: An Introduction to IMS

IBM Confidential

Table 7. Summary of IMS DB System Service Calls (continued)

Function Code Meaning and Use Options Valid for

RCMD Retrieves the second and None DB/DC and DCCTL (BMP,
subsequent command MPP, IFP), DB/DC and
response segments resulting DBCTL (DRA thread),
from an ICMD call DBCTL (BMP non-message

driven), ODBA

ROLB Roll back; eliminates Returns last message to DB batch, TM batch, BMP,
database updates ilo area MPP, IFP

ROLL Roll; eliminates database None DB batch, TM batch, BMP,
updates; abend MPP, IFP

ROLS Roll back to SETS; backs out Issues call using name of DB batch, TM batch, BMP,
database changes to SETS DB PCB or i/o PCB MPP, IFP, DBCTL, ODBA
points

SETS/SETU Set a backout point; Cancels all existing DB batch, TM batch, BMP,
establishes as many as nine backout points MPP, IFP, DBCTL, ODBA
intermediate backout points

SNAP? Collects diagnostic Choose SNAP options DB batch, BMP, MPP, IFP,
information CICS (DCCTL), ODBA

STAT® Statistics; retrieves IMS Choose type and format DB batch, BMP, MPP, IFP,
system statistics DBCTL, ODBA

SYNC Synchronization; releases Requests commit-point BMP
locked resources processing

TERM Terminate; releases a PSB None CICS (DBCTL or DB/DC)

so another can be scheduled;
commit database changes

XRST Extended restart; works with Specifies up to seven DB batch, TM batch, BMP
symbolic checkpoint to restart areas to be saved
application program

Note:

1. GSCD is a Product-sensitive programming interface.

2. SNAP is a Product-sensitive programming interface.
3. STAT is a Product-sensitive programming interface.

4. b indicates a blank. All calls must be four characters.

Table 8. Summary of IMS TM System Service Calls
Function Code Meaning and Use Options Valid Usage

APSB Allocate PSB. Allocates a None MPP
PSB for use in CPI-C driven
application programs.

CHKP (Basic) Basic checkpoint. For None batch, BMP, MPP
recovery purposes.

CHKP (Symbolic) Symbolic checkpoint. For Can specify seven program batch, BMP
recovery purposes. areas to be saved.
DPSB Deallocate PSB. Frees a None MPP

PSB in use by a CPI-C
driven application program.

Chapter 17. Application Programming Overview 163

Table 8. Summary of IMS TM System Service Calls (continued)

IBM Confidential

Function Code

Meaning and Use

Options

Valid Usage

GMSG

Retrieve a message from
the AO exit routine.

Can wait for an AOI
message when none is
available.

DB/DC and DCCTL(BMP,
MPP, IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP non-message
driven)

GscD'! Get the address of the None batch
system contents directory.

ICMD Issue an IMS command and None DB/DC and DCCTL(BMP,
retrieve the first command MPP, IFP), DB/DC and
response segment. DBCTL(DRA thread),

DBCTL(BMP non-message
driven)

INIT Application receives data Checks each PCB for data batch, BMP, MPP, IFP
availability status codes. availability.

INQY Inquiry. Retrieves None batch, BMP, MPP, IFP
information about output
destinations, session status,
execution environment, and
the PCB address.

LOGH 2 Log. Write a message to the None batch, BMP, MPP, IFP
system log.

RCMD Retrieve the second and None DB/DC and DCCTL(BMP,
subsequent command MPP, IFP), DB/DC and
response segments DBCTL(DRA thread),
resulting from an ICMD call. DBCTL(BMP non-message

driven)

ROLB Rollback. Backs out Call returns last message to batch, BMP, MPP, IFP
messages sent by the i/lo area.
application program.

ROLL Roll. Backs out output None batch, BMP, MPP
messages and terminates
the conversation.

ROLS Returns message queue Issues call with i/o PCB or batch, BMP, MPP, IFP
positions to sync points set aib
by the SETS or SETU call.

SETS Sets intermediate sync Cancels all existing backout batch, BMP, MPP, IFP
(backout) points. points. Can establish up to

9 backout points.

SETU Sets intermediate sync Cancels all existing backout batch, BMP, MPP, IFP

(backout) points. points. Can establish up to
9 backout points.

SYNC Synchronization Request commit point BMP

processing.

XRST Restart. Works with Can specify up to 7 areas to batch, BMP
symbolic CHKP to restart be saved.
application program failure.

Note:

1. GSCD is a Product-sensitive programming interface.
2. b indicates a blank. All calls must be four characters.

164 IMS: An Introduction to IMS

IBM Confidential

Chapter 18. Application Programming for the IMS Database
Manager

There are two ways that application programs can interact with IMS DB:
» Traditional applications can use the DL/I database call interface.

» Java applications can use IMS Java’s implementation of JDBC or the IMS Java
hierarchical interface, which is a set of classes that you can use in Java that are
similar to DL/I calls.

This chapter discusses the DL/l database call interface. See Chapter 21,
“Application Programming in IMS Java,” on page 223 for information about how
Java applications call IMS.

The following sections are covered in this chapter:

* “Introduction to Database Processing”

* “Processing Against a Single Database Structure” on page 170
» “Processing Databases with Logical Relationships” on page 184
* “Processing Databases with Secondary Indexes” on page 185

* ‘“Language Specific Programming Considerations” on page 180
* “Processing Databases with Logical Relationships” on page 184
* “Processing Databases with Secondary Indexes” on page 185

* “Loading Databases” on page 187

» “Using Batch Checkpoint/Restart” on page 192

Introduction to Database Processing

In general, database processing is transaction oriented. An application program
accesses one or more database records for each transaction it processes. There
are two basic types of DL/I application programs:

* The direct access program
» The sequential access program

A direct access program accesses, for every input transaction, some segments in
one or more database records. These accesses are based on database record and
segment identification. This identification is essentially derived from the transaction
input. Normally it is the root-key value an additional (key) field values of dependent
segments. For more complex transactions, segments could be accessed in several
DL/l databases concurrently.

A sequential application program accesses sequentially selected segments of all of
a consecutive subset of a particular database. The sequence is usually determined
by the key of the root-segment. A sequential program can also access other
databases, but those accesses are direct, unless the root-keys of both databases
are the same.

A DL/l application program normally processes only particular segments of the DL/I
databases. The portion that a given program processes is called an application data
structure. This application data structure is defined in the program specification
block (PSB). There is one PSB defined for each application program type. An
application data structure always consists of one or more hierarchical data
structures, each of which is derived from a DL/l physical or logical database.

© Copyright IBM Corp. 2004 165

IBM Confidential

Application Programming Interfaces to IMS

166

During initialization, both the application program and its associated PSB are loaded
from their respective libraries by the IMS batch system The DL/l modules, which
reside together with the application program in one region, interpret and execute
database CALL requests issued by the program.

Calls to DL/I

A call request is composed of a CALL statement with an argument list. The
argument list specifies the processing function to be performed, the hierarchic path
to the segment to be accessed, and the segment occurrence of that segment. One
segment may be operated upon with a single DL/I call. However, a single call never
will return more than one occurrence of one segment type.

The arguments contained within any DL/I call request have been defined in “Calls to
IMS” on page 155. The following is a sample for a basic CALL statement for
COBAL:

CALL "CBLTDLI" USING function,PCB-name,I/0 Area, SSAL,...SSAn.

Table 9 describes some of the components of the CALL statement. Here you will
find the basic DL/I call functions to request DL/l database services.

Table 9. DL/I Function Descriptions

RSF (request service function?) DL/I Call Function
GET UNIQUE 'GUbb’

GET NEXT "GNbb’

GET HOLD UNIQUE "GHUb’

GET HOLD NEXT "GHNb’

INSERT ISRT’

DELETE ‘DLET

REPLACE 'REPL

Note: b stands for blank. Each CALL function is always 4 characters.

Table 10 constitutes the various categories of segment access types.

Table 10. Segment Access

Segment Access DL/I Call Function
Retrieve a segment GUbb, GNbb, GHUb, GHNb
Replace (update) a segment REPL

Delete a segment DLET

Insert (add) a segment ISRT

In addition to the above database calls, there are the system service calls. These
are used for requesting systems services such as checkpoint/restart. All of the
above calls and some basic system service calls will be discussed in detail in the
following sections.

IMS: An Introduction to IMS

IBM Confidential

Segment Search Arguments (SSAs)

For each segment accessed in a hierarchical path, one SSA can be provided. The
purpose of the SSA is to identify by segment name and, optionally by field value,
the segment to be accessed.

The basic function of the SSA permits the application program to apply three
different kinds of logic to a call:

* Narrow the field of search to a particular segment type, or to a particular
segment-occurrence.

* Request that either one segment or a path of segments be processed.
» Alter DL/I's position in the database for subsequent call.

Segment Search Argument (SSA) names represent the fourth (fifth for PL/I) through
last arguments (SSA1 through SSAN) in the call statement. There can be 0 or 1
SSA per level, and, since DL/l permits a maximum of 15 levels per database, a call
may contain from 0 to 15 SSA names. In our subset, an SSA consists of one, two
or three elements: The segment name, command code(s) and a qualification
statement, as shown in Table 11. Table 12 on page 168 shows the values of the
relational operators described in Table 11.

Table 11. Segment Name, Command Code, and Qualifications

Operator Description

Segment name The segment name must be eight bytes long, left-justified
with trailing blanks required. This is the name of the
segment as defined in a physical and/or logical DBD
referenced in the PCB for this application program.

Command codes The command code are optional. They provide functional
variations to be applied to the call for that segment type.
An asterisk (*) following the segment name indicates the
presence of one or more command codes. A blank or a
left parenthesis is the ending delimiter for command
codes. Blank is use when no qualification statement exists

Qualification statement The presence of a qualification statement is indicated by a
left parenthesis following the segment name or, if present,
command codes. The qualification statement consists of a
field name, a relational-operator, and a comparative-value.

Begin qualification character The Left parenthesis, “(“, indicates the beginning of a
qualification statement. If the SSA is unqualified, the
eight-byte segment name or if used, the command codes,
should be followed by a blank.

Field name The field name is the name of a field which appears in the
description of the specified segment type in the DBD. The
name is up to eight characters long, left-justified with
trailing blanks as required. The named field may be either
the key field or any data field within a segment. The field
name issued for searching the database, and must have
been defined in the physical DBD.

Relational operator The relational operator is a set of two characters which
express the manner in which the contents of the field,
referred to by the field name, is to be tested against the
comparative-value. See XREF TAB 13 for a list of the
values.

Chapter 18. Application Programming for the IMS Database Manager 167

168

IBM Confidential

Table 11. Segment Name, Command Code, and Qualifications (continued)

Operator Description

Comparative value The comparative value is the value against which the
contents of the field, referred to by the field name, is to be
tested. The length of this field must be equal to the length
of the named field in the segment of the database. That is,
it includes leading or trailing blanks (for alphameric) or
zeros (usually needed for numeric fields) as required. A
collating sequence, not an arithmetic, compare is
performed.

End qualification character The right parenthesis, “)”, indicates the end of the

qualification statement.

Table 12. Relational Operator Values

Operator Meaning

b= or 'EQ’ Must be equal to

>=or 'GFE’ Must be greater than or equal to
<=or LE’ Must be less than or equal to
'b>" or 'GT’ Must be greater than

'b<’ or LT’ Must be less than

‘<>’ or 'NE’ Must be not equal to

Note: In Table 12, the lowercase b represents a blank character.

Qualification

Just as calls are “qualified” by the presence of an SSA, SSAs are categorized as
either “qualified” or “unqualified”, depending on the presence of absence of a
qualification statement. Command codes may be included in or omitted from either
qualified or unqualified SSAs.

In its simplest form, the SSA is unqualified and consists only of the name of a
specific segment type as defined in the DBD. In this form, the SSA provides DL/I
with enough information to define the segment type desired by the call. For
example:

SEGNAMEbb Tast character blank to unqualified.

Qualified SSAs (optional) contain a qualification statement composed of three parts:
« Afield name defined in the DBD

» A relational operator

* A comparative value

DL/l uses the information in the qualification statement to test the value of the
segment’s key or data fields within the database, and thus to determine whether the
segment meets the user’s specifications. Using this approach. DL/l performs the
database segment searching. The program need process only those segments that
precisely meet some logical criteria. For example:

SEGNAMEb (fieldxxx>=value)

The qualification statement test is terminated either when the test is satisfied by an
occurrence of the segment type, or when it is determined that the request cannot
be satisfied.

IMS: An Introduction to IMS

IBM Confidential

Command Codes

Both unqualified and qualified SSAs may contain one or more optional command
codes which specify functional variations applicable to the call function or the
segment qualification. The command codes are discussed in detail later in this
chapter.

General characteristics of segment search arguments:

* An SSA may consist of the segment name only (unqualified). It may optionally
also include one or more command codes and a qualification statement.

* SSAs following the first SSA must proceed down the hierarchical path. Not all
SSAs in the hierarchical path need be specified. That is, there may be missing
levels in the path. DL/I will provide, internally, SSAs for missing levels according
to the rules given later in this chapter. However, it is strongly recommended to
always include SSAs for every segment level.

Examples of SSAs will be given with the sample calls at each DL/I call discussion in
“Handling Status Codes.”

Handling Status Codes

After each DL/I call, a two-byte status code is returned in the PCB which is used for
that call. There are three categories of status codes:

* The blank status code, indicating a successful call

» Exceptional conditions and warning status codes from an application point of
view

» Error status codes, specifying an error condition in the application program
and/or DL/

The grouping of status codes in the above categories is somewhat installation
dependent. We will, however, give a basic recommendation after each specific call
function discussion. It is also recommended that you use a standard procedure for
status code checking and the handling of error status code. The first two categories
should be handled by the application program after each single call. Figure 55 gives
an example using COBOL.

CALL 'CBLTDLI' USING

IF PCB-STATUS EQ 'GE' PERFORM PRINT-NOT-FOUND.
IF PCB STATUS NE 'bb' PERFORM STATUS-ERROR.
everything okay, proceed...

Figure 55. Evaluating Status Codes

Notice that it is more convenient to directly test the regular exceptions in-line
instead of branching to a status code check routine. In this way, you clearly see the
processing of conditions that you wish to handle from an application point of view,
leaving the real error situations to central status code error routine. A detailed
discussion of the error status codes and their handling will be presented later in this
chapter.

Sample Presentation of a Call

DL/l calls will be introduced in the following sections. For each call we will give
samples. These samples will be in a standard format, as shown in Figure 56 on
page 170.

Chapter 18. Application Programming for the IMS Database Manager 169

IBM Confidential

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'

01 SSAOO1-GU-SEIPART.
02 SSAOO1-BEGIN PICTURE ...
02
02

01 TIOAREA PICTURE X(256).

bb: succesfull call
--: exceptional but correct condition
other: error condition

Figure 56. Sample Call Presentation

All the calls in the samples are presented in COBOL format. The coding of a call in
P/l or Assembler will be presented later. Each call example contains three sections:

1. The first section presents the essential elements of working storage as needed
for the call.

2. The second part, the processing section, contains the call itself. Note that the
PCB-NAME parameter should see the selected PCB defined in the Linkage
Section. Sometimes we will add some processing function description before
and/or after the call, in order to show the call in its right context.

3. The third section contains the status codes and their interpretation, which can
be expected after the call.

The last category of status code, labeled “other: error situation,” would normally be
handled by a status code error routine. A discussion of those error status codes
with the presentation of such a routine is later in this chapter.

Processing Against a Single Database Structure

This section discusses processing a single database record. A database record is a
root segment and all of its physically dependent child segments.

DL/l Positioning

170

To satisfy a call, DL/I relies on two sources of segment identification:

» The established position in the database as set by the previous call against the
PCB.

* The segment search arguments as provided with the call.

The database position is the knowledge of DL/I of the location of the last segment
retrieved and all segments above it in the hierarchy. This position is maintained by
DL/l as an extension of, and reflected in, the PCB. When an application program
has multiple PCBs for a single database, these positions are maintained
independently. For each PCB, the position is represented by the concatenated key
of the hierarchical path from the root segment down to the lowest level segment
accessed. It also includes the positions of non-keyed segments.

IMS: An Introduction to IMS

IBM Confidential

If no current position exists in the database, then the assumed current position is
the start of the database. This is the first physical database record in the database.
With HDAM this is not necessarily the root-segment with the lowest key value.

Retrieving Segments
There are two basic ways to retrieve a segment:
» Retrieve a specific segment by using a GU type call
* Retrieve the next segment in hierarchy by using a GN type call

If you know the specific key value of the segment you want to retrieve, then the GU
call will allow to retrieve only the required segment. If you don’t know the key value
or don’t care then the GN call will retrieve the next available segment which meets

your requirements.

The Get Unique (GU) Call

The basic get unique (GU) call, function code “GUbb” normally retrieves one
segment in a hierarchical path. The segment retrieved is identified by an SSA for
each level in the hierarchical path down to and including the requested segment.
Each should contain at least the segment name. The SSA for the root-segment
should provide the root-key value. To retrieve more then one segment in the path,
see “D Command Code” on page 176. Figure 57 shows an example of the get
unique call.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'

01 SSA001-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb=".
02 SSAGO1-FELIPGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ')"'.

01 TOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSAQO1-FE1PGPNR.
CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SEIPART.

bb: succesfull call
GE: exceptional but correct condition
other: error condition

Figure 57. Basic Get Unique Call

The main use of the GU call is to position yourself to a database record and obtain
(a path of) segment (s). Typically, the GU call is used only once for each database
record you wish to access. Additional segments within the database record would
then be retrieved by means of get next calls (see “The Get Next (GN) Call” on page
172). The GU call can also be used for retrieving a dependent segment, by adding
additional SSAs to the call.

For example, if you add a second SSA which specifies the stock location, you
would retrieve a STOCK segment below the identified part. If the SSA did not
provide a stock location number, this would be the first STOCK segment for this
part.

Chapter 18. Application Programming for the IMS Database Manager 171

172

IBM Confidential

The Get Next (GN) Call

The get next (GN) call, function code ‘GNbb’, retrieves the next segment in the
hierarchy as defined in the PCB. To determine this next segment, DL/I relies on the
previously established position.

The Unqualified Get Next Call

Figure 58 shows a get next call with no SSAs at all that will, if repeated, return the
segments in the database in hierarchical sequence. Only those segments are
returned to which the program is defined sensitive in its PCB.

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'

01 TIOAREA PICTURE X(256).

bb: if previous call retrieved a PART, then a STOCK segment will be
be retrieved

GK: a segment is returned in IOAREA, but it is a different type
at the SAME level, for instance, a PURCHASE ORDER segment
after the last STOCK segment.

GA: segment returned is IOAREA, but it is of a higher Tlevel than
the Tast one, that is, a new PART segment

GB: possible end of database reached, no segment returned

other: error condition

Figure 58. Unqualified Get Next Call

If the call in Figure 58 was issued after the get unique call in Figure 57 on page
171, then it would retrieve the first STOCK segment for this part (if one existed).
Subsequent calls would retrieve all other STOCK, PURCHASE ORDER, and
DESCRIPTION segments for this part. After this, the next part would be retrieved
and its dependent segments, etc., until the end of the database is reached. Special
status codes will be returned whenever a different segment type at the same level
or a higher level is returned. No special status code is returned when a different
segment at a lower level is returned. You can check for reaching a lower level
segment type in the segment level indicator in the PCB. Remember, only those
segments to which the program is sensitive via its PCB are available to you.

Although the unqualified GN call illustrated in Figure 58 might be efficient, especially
for report programs, you should use a qualified GN call whenever possible.

The Qualified Get Next Call

This qualified GN call should at least identify the segment you want to retrieve. In
doing so, you will achieve a greater independence toward possible database
structure changes in the future. Figure 59 on page 173 shows an example of a
qualified GN call. If you supply only the segment name in the SSA, then you will
retrieve all segments of that type from all database records with subsequent get
next calls.

IMS: An Introduction to IMS

IBM Confidential

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'
01 SSAGO2-GN-SE1PPUR PICTURE X(9) VALUE 'SEIPPURbb'

01 TOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSA0O1-FE1PGPNR.
CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME, IOAREA,SSA002-GN-SE1PPUR.

bb: next PURCHACE ORDER has been move to the IOAREA
GB: end of database reached, no segment returned
other: error condition

Figure 59. Qualified Get Next Call

Repetition of the above GN call will retrieve all subsequent PURCHASE ORDER
segments of the database, until the end of the database is reached. To limit this to
a specific part, you could add a fully qualified SSA for the PART segment. This
would be the same SSA as used in Figure 57 on page 171.

An example of a qualified get next call with a qualified SSA is shown in Figure 60.

77 GN-FUNC PICTURE XXXX VALUE 'GNbb'

01 SSA001-GU-SE1PART.
02 SSA0O1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb='.
02 SSAGO1-FELPGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ')"'.

01 SSAGO2-GN-SE1PPUR PICTURE X(9) VALUE 'SEIPPURb'.
01 TOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GN-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART
SSA002-GN-SE1PPUR.

bb: next PURCHASE ORDER segment is in IOAREA
GE: segment not found; no more purchase orders for this part,
or part number in SSA0O1 does not exist
other: error condition

Figure 60. Qualified Get Next Call with Qualified SSA

This fully qualified get next call should be primarily used. It always clearly identifies
the hierarchical path and the segment you want to retrieve.

The Get Hold Calls

To change the contents of a segment in a database through a replace or delete call,
the program must first obtain the segment. It then changes the segment’s contents
and requests DL/l to replace the segment in the database or to delete it from the
database.

This is done by using the get hold calls. These function codes are like the standard
get function, except the letter ‘H’ immediately follows the letter ‘G’ in the code (that
is, GHU, GHN). The get hold calls function exactly as the corresponding get calls
for the user. For DL/I they indicate a possible subsequent replace or delete call.

Chapter 18. Application Programming for the IMS Database Manager 173

IBM Confidential

After DL/l has provided the requested segment to the user, one or more fields, but
not the sequence field, in the segment may be changed.

After the user has changed the segment contents, he can call DL/I to return the
segment to, or delete it from the database. If, after issuing a get hold call, the
program determines that it is not necessary to change or delete the retrieved
segment, the program may proceed with other processing, and the “hold” will be
released by the next DL/I call against the same PCB.

Updating Segments

174

Segments can be updated by application programs and returned to DL/I for
restoring in the database, with the replace call, function code REPL’ Two conditions
must be met:

* The segment must first be retrieved with a get hold call, (GHU or GHN), no
intervening calls are allowed referencing the same PCB.

* The sequence field of the segment cannot be changed. This can only be done
with combinations of delete and insert calls for the segment and all its
dependents.

Figure 61 shows an example of a combination of GHU and REPL call. Notice that
the replace call must not specify a SSA for the segment to be replaced. If, after
retrieving a segment with a get hold call, the program decides not to update the
segment, it need not issue a replace call. Instead the program can proceed as if it
were a normal get call without the hold.

77 GHU-FUNC PICTURE XXXX VALUE 'GHUb'.
77 REPL-FUNC PICTURE XXXX VALUE 'REPL'.

01 SSA001-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb=".
02 SSAGOL-FE1PGPNR PICTURE X(8).

02 SS1001-END PICTURE X VALUE ')'.
01 SSAPO2-GN-SEIPPUR PICTURE X(9) VALUE 'SE1PPURbb'.
01 TIOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSAGO1-FE1PGPNR.
CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSA0O1-GU-SE1PART
SSA002-GN-SE1PPUR.
the retrieved PURCHASE ORDER segment can now be changed by the program
in the IOAREA.
CALL 'CBLTDLI' USING REPL-FUNC,PCB-NAME,IOAREA.

bb: segment is replaced with contents in the IOAREA
other: error condition

Figure 61. Basic Replace Call

Use the get hold call whenever there is a reasonable chance (about 5% or more)
that you will change the segment because there is only a very small performance
difference between the get and the get hold call.

Deleting Segments

To delete the occurrence of a segment from a database, the segment must first be
obtained by issuing a get hold (GHU, GHN) call. Once the segment has been
acquired, the DLET call may be issued.

IMS: An Introduction to IMS

IBM Confidential

No DL/I calls which use the same PCB can intervene between the get hold call and
the DLET call, or the DLET call is rejected. Quite often a program may want to
process a segment prior to deleting it. This is permitted as long as the processing
does not involve a DL/I call which refers to the same database PCB used for the
get hold/delete calls. However, other PCBs may be referred to between the get hold
and DLET calls.

DL/I is advised that a segment is to be deleted when the user issues a call that has
the function DLET. The deletion of a parent, in effect, deletes all the segment
occurrences beneath that parent, whether or not the application program is
sensitive to those segments. If the segment being deleted is a root segment, that
whole database record is deleted. The segment to be deleted must still be in the
IOAREA of the delete call (with which no SSA is used), and its sequence field must
not have been changed. Figure 62 gives an example of a DLET call.

77 GHU-FUNC PICTURE XXXX VALUE 'GHUb'.
77 DLET-FUNC PICTURE XXXX VALUE 'DLET'.

01 SSA001-GU-SE1PART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb='.
02 SSAGO1-FE1PGPNR PICTURE X(8).

02 SS1001-END PICTURE X VALUE ')"'.
01 SSA0O2-GN-SE1PPUR PICTURE X(9) VALUE 'SE1PPURbb'.
01 TOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSA0O1-FEIPGPNR.
CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART
SSA002-GN-SE1PPUR.

the retrieved PURCHASE ORDER segment can now be processed by the
program in the IOAREA.

CALL 'CBLTDLI' USING DLET-FUNC,PCB-NAME,IOAREA.

bb: requested purchase order segment is deleted from the database;
all its dependents, if any, are deleted also.
other: error condition

Figure 62. Basic Delete Call

Inserting Segments
Adding new segment occurrences to a database is done with the insert call,
function code ‘ISRT’.

The DL/l insert call is used for two distinct purposes: It is used initially to load the
segments during creation of a database. It is also used to add new occurrences of
an existing segment type into an established database. The processing options field
in the PCB indicates whether the database is being added to or loaded. The format
of the insert call is identical for either use.

When loading or inserting, the last SSA must specify only the name of the segment
being inserted. It should specify only the segment name, not the sequence field.
Thus an unqualified SSA is always required.

Up to a level to be inserted, the SSA evaluation and positioning for an insert call is

exactly the same as for a GU call. For the level to be inserted, the value of the
sequence field in the segment in the user I/O area is used to establish the insert

Chapter 18. Application Programming for the IMS Database Manager 175

IBM Confidential

position. If no sequence field was defined, then the segment is inserted at the end
of the physical twin chain. If multiple non-unique keys are allowed, then the
segment is inserted after existing segments with the same key value.

Figure 63 shows an example of an ISRT call. The status codes in this example are
applicable only to non-initial load inserts. The status codes at initial load time will be
discussed under “Loading Databases” on page 187.

77 ISRT-FUNC PICTURE XXXX VALUE 'ISRT'.

01 SSA0O1-GU-SEIPART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SE1PARTb(FE1PGPNRb=".
02 SSAGOL-FE1PGPNR PICTURE X(8).

02 SS1001-END PICTURE X VALUE ')"'.
01 SSAPO2-GN-SEIPPUR PICTURE X(9) VALUE 'SE1PPURbb'.
01 TIOAREA PICTURE X(256).

MOVE PART-NUMBER TO SSA0O1-FE1PGPNR.

MOVE PURCHASE-ORDER TO IOAREA.

CALL 'CBLTDLI' USING ISRT-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART
SSA002-GN-SE1PPUR.

bb: new PURCHASE ORDER segment is inserted in database
II: segment to insert already exists in database
GE: segment not found; the requested part number (that is, a
parent of the segment to be inserted) is not in the database
other: error condition

Figure 63. Basic Insert Call

Note: There is no need to check the existence of a segment in the database with a
preceding retrieve call. DL/l will do that at insert time, and will notify you with an I
or GE status code. Checking previous existence is only relevant if the segment has
no sequence field.

Calls with Command Codes

176

Both unqualified and qualified SSAs may contain one or more optional command
codes which specify functional variations applicable to either the call function or the
segment qualification. Command codes in an SSA are always prefixed by an
asterisk (*), which immediately follows the 8 byte segment name. Figure 64
illustrates an SSA with command codes D and P.

01 SSA001-GU-SEI1PART.
02 SSAOO1-BEGIN PICTURE x(19) VALUE 'SE1PARTb*DP(FE1PGPNRb=".
02 SSAGOL-FE1PGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ')"'.

Figure 64. Example of an SSA with D and P Command Codes

D Command Code

The ‘D’ command code is the one most widely used. It requests DL/I to issue path
calls. A “path call” enables a hierarchical path of segments to be inserted or
retrieved with one call. (A “path” was defined earlier as the hierarchical sequence of
segments, one per level, leading from a segment at one level to a particular
segment at a lower level.) The meaning of the ‘D’ command code is as follows:

IMS: An Introduction to IMS

IBM Confidential

» For retrieval calls, multiple segments in a hierarchical path will be moved to the
I/C area with a single call. The first through the last segment retrieved are
concatenated in the user’s I/C area. Intermediate SSAs may be present with or
without the ‘D’ command code. If without, these segments are not moved to the
user’s I/O area. The segment named in the PCB “segment name feedback area”
is the lowest-level segment retrieved, or the last level satisfied in the call in case
of a non-found condition. Higher-level segments associated with SSAs having the
‘D’ command code will have been placed in the user’s /O area even in the
not-found case. The ‘D’ is not necessary for the last SSA in the call, since the
segment which satisfies the last level is always moved to the user’s I/O area. A
processing option of ‘P’ must be specified in the PSBGEN for any segment type
for which a command code ‘D’ will be used.

* For insert calls, the ‘D’ command code designates the first segment type in the
path to be inserted. The SSAs for lower-level segments in the path need not
have the D command code set, that is, the D command code is propagated to all
specified lower level segments.

Figure 65 shows an example of a path call.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'.

01 SSA004-GU-SE1PART.
02 SSA004-BEGIN PICTURE x(21) VALUE 'SE1PARTb*D(FE1PGPNRb=".
02 SSADO4-FELPGPNR PICTURE X(8).
02 SS1004-END PICTURE X VALUE ')"'.

01 SSAOO5-GN-SE1PGDSC PICTURE X(9) VALUE 'SELPGDSCb'.

01 TOAREA PICTURE X(256).

CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSA004-GU-SE1PART
SSA004-GN-SE1PGDSC.

bb: both segments (PART and DESCRIPTION) have been placed in IOAREA
GE: segment not found; PART segment may be retrieved in IOAREA;
check segment name and level indicator in PCB.
other: error condition

Figure 65. Sample Path Retrieve Call

Figure 65 shows a common usage of the path call. Although we don’t know if the
requested part has a separate DESCRIPTION segment (SE1PGDSC), we retrieve it
at almost no additional cost if there is one.

N Command Code

When a replace call follows a path retrieve call, it is assumed that all segments
previously retrieved with the path call are being replaced. If any of the segments
have not been changed, and therefore, need not be replaced, the ‘N’ command
code may be set at those levels, telling DL/I not to replace the segment at this level
of the path. The status codes returned are the same as for a replace call.

F Command Code

This command code allows you to back up to the first occurrence of a segment
under its parent. It has meaning only for a get next call. A get unique call always
starts with the first occurrence. Command code F is disregarded for the root
segment.

Chapter 18. Application Programming for the IMS Database Manager 177

IBM Confidential

L Command Code
This command code allows you to retrieve the last occurrence of a segment under
its parent. This command code should be used whenever applicable.

Hyphen (-) Command Code
The hyphen is a null command code. It s purpose is to simplify the maintenance of
SSAs using command codes.

Database Positioning After DL/l Calls

178

As stated before, the database position is used by DL/I to satisfy the next call
against the PCB. The segment level, segment name and the key feedback areas of
the PCB are used to present the database position to the application program.

The following basic rules apply:

« If a get call is completely satisfied, current position in the database is reflected in
the PCB key feedback area.

« Areplace call does not change current position in the database.

» Database position after a successful insert call is immediately after the inserted
segment.

« Database position after return of an Il status code is immediately prior to the
duplicate segment. This positioning allows the duplicate segment to be retrieved
with a GN call.

» Database position after a successful delete call is immediately after all
dependents of the deleted segment. If no dependents existed, database position
is immediately after the deleted segment.

» Database position is unchanged by an unsuccessful delete call.

« After an (partial) unsuccessful retrieve call, the PCB reflects the lowest level
segment which satisfied the call. The segment name or the key feed back length
should be used to determine the length of the relevant data in the key feedback
area. Contents of the key feedback area beyond the length value must not be
used, as the feedback area is never cleared out after previous calls. If the
level-one (root) SSA cannot be satisfied, the segment name is cleared to blank,
and the level and key feedback length are set to 0.

In considering ‘current position in the database’, it must be remembered that DL/I
must first establish a starting position to be used in satisfying the call. This starting
position is the current position in the database for get next calls, and is a unique
position normally established by the root SSA for get unique calls.

The following are clarifications of ‘current position in the database’ for special
situations:

* If no current position exists in the database, then the assumed current position is
the start of the database.

« If the end of the database is encountered, then the assumed current position to
be used by the next call is the start of the database.

» If a get unique call is unsatisfied at the root level, then the current position is
such that the next segment retrieved would be the first root segment with a key
value higher than the one of the unsuccessful call, except when end of the
database was reached (see above) or for HDAM, where it would be the next
segment in physical sequence.

IMS: An Introduction to IMS

IBM Confidential

Using Multiple

You can always reestablish your database positioning with a GU call specifying all
the segment key values in the hierarchical path. It is recommended that you use a
get unique call after each not found condition.

PCBs for One Database

Whenever there is a need to maintain two or more independent positions in one
database, you should use different PCBs. This avoids the reissue of get unique
calls to switch forward and backward from one database record or hierarchical path
to another. There are on restrictions as to the call functions available in these
multiple PCBs. However, to avoid “position confusion” in the application program,
you should not apply changes via two PCBs to the same hierarchical path. For
simplicity reasons you should limit the updates to one PCB unless this would cause
additional calls.

System Service Calls
Besides call functions for manipulating database segments, DL/l provides special
system service calls. The most common ones are:

STATISTICS (STAT)
This call is used to obtain various statistics from DL/I.

CHECKPOINT (CHPK)
CHPK informs DL/I that the user has “checkpointed” his program and that
thus may be restarted at this point. The current position is maintained in
GSAM databases. For all other databases, you must reposition yourself
after each checkpoint call with a get unique call.

RESTART (XRST)
XRST requests DL/I to restore checkpointed user areas and reposition
GSAM database for sequential processing if a checkpoint ID for restarting
has been supplied by the call or in the JCL.

The XRST and CHKP calls will be discussed under the topic “Using Batch
Checkpoint/Restart” on page 192.

Processing GSAM Databases

All accessing to GSAM databases is done via DL/I calls. A check is made by DL/ to
determine whether a user request is for a GSAM database. if so, control is passed
to GSAM, which will be resident in the user region. If not, control is passed to DL/I,
and standard hierarchical processing will result.

Calls to be used for GSAM accessing are:
CALL 'CBLTDLI" USING call-func,pch-name,ioarea.
Where:

call-func
Is the name of the field that contains the call function. The function could
be:

OPEN Open the GSAM database
CLSE Close the GSAM database
GN Retrieve the next sequential record

ISRT Insert a new logical record (at end of database only)

Chapter 18. Application Programming for the IMS Database Manager 179

IBM Confidential

The open and close call are optional calls to be used to explicitly initiate or
terminate database operations. The database will automatically be opened
by the issuance of the first processing call used and automatically closed at
“end-of-data” or at program termination.

Records may not be randomly added to GSAM data sets. The data set may
be extended by opening in the load mode, with DISP=MOD, and using the
ISRT function code.

pcb-name
Is the name of the GSAM PCB

ioarea Is the name of the I/O area for GN/ISRT calls

Table 13 contains the status codes associated with processing GSAM databases.

Table 13. Status Codes Associated with Processing GSAM Databases

Status Code Meaning

bb Successful call, Proceed

GL End of input data (Get Next only)
other error situation

Record Formats

Records may be fixed or variable length, blocked or unblocked. Records must not
have a sequence key. The record in the IOAREA includes a halfword record length
for variable length records.

The use of GSAM data sets in a checkpoint/restart environment is further discussed
later in this chapter.

Language Specific Programming Considerations

The next few sections discuss programming considerations that are unique to
different programming languages.

* “COBOL Programming Considerations”
» “Java Programming Considerations” on page 182
* “PL/I Programming Considerations” on page 182

COBOL Programming Considerations

180

There are a few considerations that apply when you are coding DL/l programs in
COBOL. See Figure 66 on page 181 for this discussion as the numbers between
parenthesis in the text below see the corresponding code lines. Specific parameter
values and formats are explained elsewhere throughout this chapter

IMS: An Introduction to IMS

IBM Confidential

1D
DIVISION.

ENVIRONMENT DIVISIO

DATA DIVISION.

N.

PIC XXXX
PIC XXXX
PIC XXXX
PIC X(8)

VALUE
VALUE
VALUE
VALUE

'GU .
'GN .
'1 '.
'DERROROL".

PIC X(256) VALUE SPACES.

WORKING-STORAGE SECTION.

77 GU-FUNC

77 GN-FUNC

77 ERROPT

77 DERRID

01 I0AREA

01 SSA0O1-GU-SE1PART.

02 SSA001-BEGIN
02 SSAQO1-FE1PGPN

PIC X(19) VALUE 'SE1PART (FEIPGPNR ='.

R PIC X(8).

02 SSAQO1-END
LINKAGE SECTION.
01 D1PC.
062 DIPCDBN PIC
02 DIPCLEVL PIC
02 DIPCSTAT PIC
02 DIPCPROC PIC
02 DIPCRESV PIC
02 DIPCSEGN PIC
02 DIPCKFBL PIC
02 DIPCNSSG PIC
02 DIPCKFBA PIC

PROCEDURE DIVISION.

ENTRY 'DLITCBL' USING D1PC.

éALL 'CBLTDLI" USING GU-FUNC,

SSA001-GU-SE

éALL '"CBLTDLI" USING GN-FUNC, DI1PC,

IF D1PCSTAT NOT =

1PART.

PIC X

X(8).
99.
XX.
XXXX.

VALUE ')'.

S9(5) COMP.

X(8).

S9(5) COMP.
S9(5) CoMP.

X(20).

D1PC, IOAREA,

I0AREA.

CALL "ERRRTN' USING D1PC, DERRID, IOAREA, ERROPT.

MOVE +4 TO RETURN-CODE.

CALL DFSOAST USIN

GOBACK.

G D1PC.

Figure 66. Example of a COBOL Batch Program

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000043
000044
000045

» The DL/I function codes (7)(, IOAREA (11), and Segment Search Arguments (12)
should be defined in the Working-Storage Section of the Data Division. Typically,
either the IOAREA would be REDEFINED to provide addressability to the fields

of each segment, or separate IOAREAs would be defined for each segment.

* The program Communication Blocks (PCBS) Should be defined in the Linkage
Section of the Data Division (18). When there are multiple database structures

(thus multiple PCBs) in a program, there must be one PCB defined in the

Linkage Section for each PCB in the PSB. However, these PCBs need not be in
any specific order.

* An ENTRY statement (30) should be coded at the entry to your program. A

parameter of the USING clause should exist for each database structure (PCB)
that is used in your program. The order of PCBs in this clause must be the same

as specified in the Program Specification Block (PSB) for your program.

Chapter 18. Application Programming for the IMS Database Manager

181

IBM Confidential

« Each DL/I CALL statement should be coded as in statement (33). The
parameters of the DL/I call are explained elsewhere in this chapter, and differ in
number for different functions.

» The status code in the PCB should be checked after each call (37). The
status-code error routine is discussed below (38).

« At the end of processing, control must be returned to DL/l via a GOBACK
statement (44). Optionally, you can set the COBOL ‘RETURN-CODE’ (39). If DL/I
detects no errors, and thus does not set the return code, the COBOL
‘RETURN-CODE’ value will be passed on to the next job step.

Java Programming Considerations

The basic programming considerations for Java are discussed in Chapter 21,
“Application Programming in IMS Java,” on page 223.

PL/l Programming Considerations

This section refers to Figure 67 on page 183. The numbers between parenthesis in
the text following the figure see the corresponding code line.

182 IMS: An Introduction to IMS

IBM Confidential

[Hmmmmmmm e mmmm e mmmmm e mmmmm e mmmmm e mmmm e «/0000001
/% SAMPLE PL/I PROGRAM /0000002
[m e e e /0000003
PE2PROD: 0000005
PROCEDURE (DC PTR,DB_PTR) OPTIONS (MAIN); 0000006
/% DECLARE POINTERS AND PCBS. /0000008
DECLARE 0000010

PLITDLI ENTRY, /% DL/I WITL BE CALLD#*/ 0000012

DFSOAST ENTRY OPTIONS (ASSEMBLER INTER), /* STATISTICS PRINT =/ 0000013
DFSOAER ENTRY OPTIONS (ASSEMBLER INTER), /* STATUS COOE PRINT */ 0000014

DC_PTR POINTER, /* CHPAT IN PSB */ 0000015
DB_PTR POINTER, /* ORDER DB PCB */ 0000016

01 CTPC BASED (DC_PTR), /* NOT USED IN */ 0000018
02 DUMMY CHAR (32), /* BATCH DL/I */ 0000019

01 D1PC BASED (DB_PTR), /* PHASE 2 ORDER DB */ 0000021
02 DIPCDBDN CHAR (8), /* DBD NAME */ 0000022

02 DIPCLEVL CHAR (2), /* SEGMENT LEVEL */ 0000023

02 DIPCSTAT CHAR (2), /* STATUS CODE */ 0000024

02 DIPCPROC CHAR (4), /* PROCESSING OPTN */ 0000025

02 OTPCRESV FIXED BINARY(31), /* RESERVED */ 0000026

02 D1PCSEGN CHAR (8), /* SEGMENT NAME */ 0000027

02 DIPCKFBL FIXED BINARY(31), /* KEY FEEOBACK LNG =*/ 0000028

02 DIPCNSSG FIXED BINARY(31), /* NO. OF SENSEGS */ 0000029

02 DIPCKFBA CHAR (14); /* KEY FEEDBACK */ 0000030

/* DECLARE FUNCTION COOES, I/0 AREA, CALL ARG LIST LENGTHS */ 0000032
DECLARE 0000034
I0_AREA CHAR (256) /* 1/0 AREA */ 0000036
GU_FUNC STATIC CHAR (4) INIT t'GU'I, /* CALL FUNCTION */ 0000037
FOUR STATIC FIXED BINARY (31) INIT I4), /x ARG LIST LENGTH =/ 0000038
ERROPT1 CHAR (4) INIT ('©') STATIC, /> OPTN FOR DFSOAER */ 0000039
ERROPT2 CHAR (4) INIT ('2') STATIC, /* FINAL OPTN:DFSOAER*/ 0000040
DERRID CHAR (8) INIT ('DERFORO1') STATIC; /+ ID FOR DFSOAER */ 0000041

/* DECLARE SEGMENT SEARCH AFGUMENT (SSA) - ORDER SEGMENT. */ 0000043
DECLARE 0000045
01 SSA0OO7_GU_SE20PDER, 0000047

02 SSAGO7_BEGIN CHAR (19) INIT ('SE20RDER(FE20GPEF ='), 0000048

02 SSA0O7_FE20G2EF CHAR (6), 0000049

02 SSAGO7_END CHAR (1) INIT ('1'); 0000050

/* PROCESSING PORTION OF THE PROGRAM */ 0000052
SSACO7_FE20GREF = 'XXXXXXX'; /* SET SSA VALUE */ 0000054
CALL PLITDLI (FOUR,GU_FUNC,.DB_PTR,IO_AREA, /* THIS CALL WILL */ 0000055
SSAGO7_GU_FE20RDER) ; /= RETURN 'GE' STAT =*/ 0000056

IF DIPCSTAT -- ' ' THEN /* CALL EROOR PRINT =/ 0000057
CALL DFSOAER (D1FC,DERRID,IO_AREA,ERROPT1); 0000058
CALL DFSOAER (D1PC,DERRID,IO AREA,ERROPT2); /+ FINAL CALL TO ERR*/ 0000059

/* RETURN TO CALLER. */ 0000065
END PE2PORD; 0000067

Figure 67. Example of a PL/I Batch Program

When DL/I invokes your PL/l program it will pass the addresses, in the form of
pointers, to each PCB required for execution. These will be passed in the same
sequence as specified in PSB. To use the PCBs, you must code parameters in your
PROCEDURE statement, and declare them to have the attribute POINTER.

In the example, DC_PTR and DB_PTR are specified in the PROCEDURE
statement (6) and declared POINTER variables (15 and 16). These pointer
variables should be used in declaring the PCBs as BASED structures (18 and 21),
and in calling DL/I(55).

The format of the PL/I CALL statement to invoke DL/I (55) is:
CALL PLITDLI (parmcount, function, pch-ptr, io-area,ssal,...,ssan):

Chapter 18. Application Programming for the IMS Database Manager 183

IBM Confidential

Where:

parmcount Is the number of arguments in this call following this argument. It
must have the attributes FIXED BINARY (31). See (38).

function Is the DL/I function code. It must be a fixed length character string
of length 4. pcb-ptr is a pointer variable containing the address of
the PCB. This is normally the name of one of the parameters
passed to your program at invocation.

io-area Is the storage in your program into/from which DL/l is to store/fetch
data. It can be a major structure, a connected array, a fixed-length
character string (CHAR (n)), a pointer to any of these or a pointer
to a minor structure. It cannot be the name of a minor structure of a
character string with the attribute VARYING.

ssai... Is one or more optional segment search arguments. Each SSA
argument must be one of the same PL/I forms allowed for io-areas,
described above. See (47) in the example.

Upon completion of your program, you should return either via a RETURN
statement or by executing the main procedure END statement.

Processing Databases with Logical Relationships

Generally, there is no difference between the processing of physical databases and
logical databases: all call functions are available for both. Some considerations do
apply, however, when accessing a logical child of a concatenated segment.

Accessing a Logical Child in a Physical Database

When accessing a logical child in a physical DBD, you should remember the layout
of the logical child. It always consists of the logical parent concatenated key (that is,
all the consecutive keys from the root segment down to and including the logical
parent) plus the logical child itself: the intersection data (see Figure 60 on page
173). This is especially important when inserting a logical child. You will also get an
IX status code when you try to insert a logical child and its logical parent does not
exist (except at initial load time). This will typically happen when you forget the
LPCK in front of the LCHILD.

Note: In general, physical databases should not be used when processing logical
relationships.

Accessing Segments in a Logical Database

184

The following considerations apply for each call function when accessing segments
in logical DBDs.

Retrieve Calls

These calls function as before with the same status codes. Remember, however,
that the concatenated segment always consists of the logical child segment plus,
optionally (dependent on the logical DBD), the destination parent segment.

Replace Calls

In general, these calls function the same as before. When replacing a concatenated
segment you may replace both the logical child segment and the destination parent.
Remember, however, that you never can change a sequence field. The following
sequence fields can occur in a concatenated segment:

» Destination parent concatenated key.

IMS: An Introduction to IMS

IBM Confidential

* Real logical child sequence field, (that is, the sequence of the physical twin chain
as defined for the real logical child). This field can (partially) overlap the logical
parent concatenated key.

+ Virtual logical child sequence field, (that is, the sequence of the logical twin chain
as defined for the virtual logical child). This field can (partially) overlap the
physical parent concatenated key.

* The key of the destination parent itself.

If any of the above fields is changed during a replace operation, a DA status code
will be returned, and no data will be changed in the database.

Delete Calls

In general, these calls function the same as before. If, however, you delete a
concatenated segment (either of the two versions), only the logical child and its
physical dependents (that is, the dependents of the real logical child) will be
deleted. the destination parent can be deleted only via its physical path. In other
words: “The delete is not propagated upwards across a logical relation.” You can
delete only those dependents of concatenated segments which are real dependents
of the logical child. Examples:

* If the logical DBD of Figure 13 on page 47, a PART segment was deleted, the
associated STOCK and DETAIL segments are deleted, too. However, the
associated CUSTOMER ORDER and SHIPMENT segments remain.

* If the logical DBD of Figure 13 on page 47, a CUSTOMER ORDER segment was
deleted, the associated DETAIL and SHIPMENT segments are deleted too.
However, the associated PART and, STOCK segments remain.

Notice the logical child (and its physical dependents) is always deleted whenever
one of its parents is deleted.

Insert Calls

Whenever you insert a concatenated segment, the destination parent must already
exist in the database. You can provide the destination parent together with the
logical child in the IOAREA, but it is not used. Besides the normal status codes, an
IX status code is returned when the destination parent does not exist.

Processing Databases with Secondary Indexes

Access segments via a secondary index allows a program to process segments in a
order which is not the physical sequence of the database. One good example of
this is the ORDER segment. To process an order when only the Customer order
number is known, the ORDER segment can be access via the customer order
number. This is the simplest from of secondary index.

Another basic use for a secondary index is to provide a method of processing a
subset of the segments in a database without having to read the entire database.An
example of this would be to provide a secondary index on a Balance owning field in
the customer database. The secondary index database could be defined to only
contain those database records for which a non-zero balance is owning.

Accessing Segments by Using a Secondary Index

The format of the CALL parameters for accessing segments via a secondary index
are identical to those access through the primary path. The difference is in the PCB
coded in the PSB. The second PCB in the PSB in Figure 68 on page 186 shows
how to define a process using the secondary index.

Chapter 18. Application Programming for the IMS Database Manager 185

186

IBM Confidential

* PSB with Secondary index PCB

PCB TYPE=DB,PROCOPT=G,
DBDNAME=BE2CUST, ,KEYLEN=6

PCB TYPE=DB,PROCOPT=G,
DBDNAME=BE2CUST, ,PROCSEQ=FE2CNAM, ,KEYLEN=20

SENSEQ NAME=SE2PSCUST

PSBGENG, LANG=COBOL , PSBNAME=SE2PCUST, CMPAT=YES
END

Figure 68. Example of a PSB with a Secondary Index Defined

Retrieving Segments

The same calls are used as before. However, the index search field, defined by an
XDFLD statement in the DBD will be used in the SSA for the get unique of the root
segment. It defines the secondary processing sequence.

After the successful completion of this get unique call, the PCB and ICAREA look
the same as after the basic GU of Figure 57 on page 171, except that the key
feedback area now starts with the customer name field.

When using the secondary processing sequence, consecutive get next calls for the
CUSTOMER ORDER segment will present the CUSTOMER ORDER segments in
customer name sequence.

If both the primary and the secondary processing sequence are needed in one
program, you should use two PCBs as shown in Figure 69.

77 GU-FUNC PICTURE XXXX VALUE 'GUbb'

01 SSA0O2-GU-SE2PCUST.
02 SSA0O2-BEGIN PICTURE x(19) VALUE 'SE2PCUSTb(FE2PCNAMb=".
02 SSADO2-FE2PCNAM PICTURE X(20).
02 SS1002-END PICTURE X VALUE ')'.

01 TIOAREA PICTURE X(256).

MOVE CUSTOMER-NAME TO SSA002-FEZ2PCNAM.
CALL 'CBLTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSA002-GU-SE2PCUST.

bb: succesfull call
GE: exceptional but correct condition
other: error condition

Figure 69. Example of a Get Unique Call Using a Secondary Index

Replacing Segments

To replace segments in the indexed database a combination of get hold and replace
calls can be used as before. Again, no sequence fields may be changed. The index
search fields, however, can be changed. If an index search field is changed, DL/I
will automatically update the index database via a delete old and insert new pointer
segment.

IMS: An Introduction to IMS

IBM Confidential

Note: When using a secondary processing sequence, this could result in the later
re accessing of a database record.

Deleting Segments

When using a secondary processing sequence, you cannot delete the index target
segment (that is, the root segment). If you have a need to do so, you should use a
separate PCB with a primary processing sequence.

Inserting Segments
Again, when using a secondary processing sequence, you cannot insert the index
target segment. In all other cases, the ISRT call will function as before.

Creating Secondary Indexes

A secondary index can be created during initial load of the indexed database or
later. The secondary index database is created with the DL/I reorganization utilities.
No application program requirements.

Loading Databases

Loading databases with information has some considerations for the application
program and the PSB used.

Overview of Loading Databases

Basically the load program inserts segments into the database from some kind of
input. It builds the segments and inserts them in the database in hierarchical order.
Quite often the data to be stored in the database already exists in one or more files,
but merge and sort operations may be required to present the data in the correct
sequence.

The process of loading database is different than updating a database with
segments already in the it. A database must be initialized before it can be used by
most application programs. A database can be initialize in several ways:

» Data reloaded by the database recovery utility

* Data loaded by a database reload utility

» Data loaded by a program with the PROCOPT of L (full-function only)

Once the database is initialize it will remains so until it has been deleted and
redefined. Therefore is it possible to have an empty initialize database. A database
which is not empty can not be used by a PSB with a PROCOPT of L nor can it be
recovered or loaded with the reload utility.

If the database has no secondary indexes or logical relationship, then the load
process is very straight forward. Any program with a PROCOPT of L can load it.
Once that program has completed and close the database, the database can then
be used by any program for read or update.

The loading of database with logical relationships and secondary indexes are
discussed next.

Loading a HDAM Database

When initially loading an HDAM database, you should specify PROCOPT=L in the
PCB. There is no need for DL/I to insert the database records in root key order, but
you must still insert the segments in their hierarchical order.

Chapter 18. Application Programming for the IMS Database Manager 187

IBM Confidential

For performance reasons it is advantageous to sort the database records into
sequence. The physical sequence should be the ascending sequence of the block
and root anchor point values as generated by the randomizing algorithms. This can
be achieved by using a tool from the IMS/ESA System Ultilities/Database Tools
(WHAT TOOL? AN IMS UTILITY?). This tool provides a sort exit routine, which
gives each root key to the randomizing module for address conversion, and then
directs SORT to sort on the generated address + root key value.

Status Codes for Loading Databases: The status codes, as shown in Table 14,
can be expected when loading basic databases after the ISRT call:

Table 14. Database Load Status Codes

Returned Status Code Explanation

bb or CK Segment is inserted in database

LB The segment already exists in database

IC The key field of the segment is out of sequence

LD No parent has been inserted for this segment in the
database

other Error situation

Status Codes for Error Routines: There are essentially two categories of error
status codes: those caused by application program errors and those caused by
system errors. Sometimes, however, a clear split cannot be made immediately.

This listing is not complete, but does contain all the status codes you should expect
using our subset of DL/I. You should see the DL/I status codes in the IMS Version
9: Messages and Codes, Volume 1 if you should need a complete listing of all
possible status codes.

Loading a HIDAM Database

When loading a HIDAM database initially, you must specify PROCPT=LS in the
PCB. Also, the database records must be inserted in ascending root sequence, and
the segment must be inserted in their hierarchical sequence.

Loading a Database with Logical Relationships

188

To establish the logical relationships during initial load of databases with logical
relationships, DL/l provides a set of utility programs. These are necessary because
the sequence in which the logical parent is loaded is normally not the same as the
sequence in which the logical child is loaded. To cope with this, DL/l will
automatically create a workflow whenever you load a database which contains the
necessary information to update the pointers in the prefixes of the logically related
segments.

Before doing so, the work file is sorted in physical database sequence with the
prefix resolution utility (DFSURG10). This utility also checks for missing logical
parents. Next, the segment prefixes are updated with the prefix update utility
(DFSURGPO). After this, the database (s) are ready to use. The above database
load, prefix resolution and update should be preceded by the Prereorganization
utility (DFSURPRO). This utility generates a control data set to be used by
database load, DFSURG10 and DFSURGP). Figure 70 on page 189 illustrates the
process.

IMS: An Introduction to IMS

IBM Confidential

Prereorg
(DFSURPRO)

A4

v
4

v
Load Program DFSURWF1 | RECON
DBDLIB | (PROCOPT=L) " | Data Sets

-

Databases v
Prefix Resolution
(DFSURG10)
DFSURWF3
A 4
> Prefix Update <
(DFSURGPO)
DBDLIB

Databases

Figure 70. Overview of Loading a Database that has Logical Relationships

If both any of the databases involved in the logical relationship also has secondary

indexes, then the process for loading a database with secondary indexes must be

used as well. See Figure 72 on page 191 for an illustration of the complete process.

Notes:

1. You cannot use a logical DBD when initially loading a database (PROCOPT=L
(S) in the PCB).

2. You must load all database involved in the logical relationship and pass the
work files to the prefix resolution utility.

Loading a Database with Secondary Indexes

To load a database which has secondary indexes, the primary database must be
uninitialized as shown in Figure 71 on page 190. IMS will extract the required
information into the work file to build the secondary index database(s).

Chapter 18. Application Programming for the IMS Database Manager 189

A 4

DBLIB

Databases

Empty Secondary
Index Databases

DBLIB

Secondary
Index Databases

Preorg
(DFSURPRO)

A4

Load Program
(PROCOPT=L)

L E—

-

A 4

DFSURWF1

Prefix Resolution
(DFSURG10)

A4

DFSURIDX

Unload Secondary Index
(DFSURULO)

A 4

Reload Secondary Index
(DFSURRLO)

Figure 71. Overview of Loading a Database that has Secondary Indexes

IBM Confidential

Data Sets

=
Sa Unloaded Index
~ Databases

RECON
Data Sets

Figure 72 on page 191 illustrates the process of loading a database that has logical
relationships and secondary indexes.

190 IMS: An Introduction to IMS

IBM Confidential

DBLIB

Databases

RECON
Data Sets

—

Databases |_

—
Empty Secondary

Prereorg
(DFSURPRO)

A4

Load Program
(PROCOPT=L)

RECON
Data Sets

- &

A 4

DFSURWF1

DFSURIDX

Prefix Resolution
(DFSURG10)

{]

A4

DFSURWF3

Prefix Update
(DFSURGPO0)

A4

DBDLIB

Index Databases

DBDLIB

Unload Secondary Index
(DFSURULO)

—

C
C

[F

Secondary Index
Databases

A4

Unloaded Index

Datasets

Reload Secondary Index
(DFSURRLO)

RECON
Data Sets

Figure 72. Overview of Loading a Database that has Logical Relationships and Secondary Indexes

Chapter 18. Application Programming for the IMS Database Manager

IBM Confidential

Using Batch Checkpoint/Restart

The batch checkpoint/restart facility of DL/I allows long running programs to be
restarted at an intermediate point in case of failure. At regular intervals (CHKP calls)
during application program execution, DL/l saves on its log data set, designated
working storage areas in the user’s program, the position of GSAM databases, and
the key feedback areas of non-GSAM databases

For each checkpoint, a checkpoint ID (message DFS681I) will be written to the
z/OS system console and to the job system output.

At restart, the restart checkpoint ID is supplied in the PARM field of the EXEC
statement of the job. DL/I will then reposition the GSAM databases and restore the
designated program areas. This is accomplished with a special restart call (XRST)
which must be the very first DL/I call in the program. At initial program execution,
the XRST call identifies the potential program areas to be checkpointed by later
CHKP calls.

To utilize the checkpoint/restart function of DL/I for batch programs, you should
consider the following guidelines:

* All the data sets that the program uses must be DL/l databases. GSAM should
be used for sequential input and output files, including SYSIN and SYSOUT. Any
other file cannot be repositioned by DL/l and can result in duplicate or lost
output.

» The GSAM output data sets should use DISP=(NEW,KEEP,KEEP) for the initial
run and DISP=(OLD,KEEP,KEEP) at restart (s).

* SYSOUT should not be used directly. The output should be written to a GSAM
file (as in 2) and be printed with the additional jobstep. IEBGENER can be used
for this purpose.

¢ The first call issued to DL/l must be XRST call. Its format will be discussed later.

» The frequency of the checkpoint call is your choice. A basic recommendation is
on checkpoint for every 50 to 500 update transactions. It is good practice to
program for an easy adjustment of this frequency factor.

» After each checkpoint call, you must reposition yourself in the non-GSAM
databases by issuing a get unique call for each of those databases.
Repositioning of GSAM databases is done by DL/I, and you should proceed with
a get next (input) or an insert (output) call.

The following sections discuss the restart call (see “Using the Restart Call”) and the
checkpoint call (see “Using the Checkpoint Call’ on page 194).

Using the Restart Call

192

Upon receiving the restart call (XRST), DL/I checks whether a checkpoint ID has
been supplied in the PARM field of the EXEC card or in the work area pointed to by
the XRST call. If no ID has been supplied, a flag is set to trigger storing of
repositioning data and user areas on subsequent CHKP calls (that is, DL/I assumes
that this is the initial program execution, not a restart).

If the checkpoint at which restart is to occur has been supplied, the IMS batch
restart routine reads backwards on the log defined in the /IMSLOGR DD card to
locate the checkpoint records. User program areas are restored.

The GSAM databases active at the checkpoint are repositioned for sequential
processing. Key feedback information is provided in the PCB for each database

IMS: An Introduction to IMS

IBM Confidential

active at the checkpoint. The user program must reposition itself on all non-GSAM
databases, just as it must do after taking a checkpoint.

The format of the XRST call in COBOL is:

CALL 'CBITDLI' wusing call-func,IOPCB-name, I/0-area-len,work-area
[,1st-area-len, 1st rea,...,nth-area-len,nth-area}.

The format of the XRST call in PL/I is:

CALL PLITDLI (parmcount,call-func,IOPCB-name. I/0-area-len,work-ar
[,1st-area-len,lst-area,...,nth-area-Ten,nth-area]):

The format of the XRST call in Assembler is:

CALL ASMTDLI, (call-func,IOPCB-name,I/0-area-len,work-area[,1lst-area-1len,
Ist-area,...,nth-area-len,nth-rea]),

Where:

parmcount
Is the name of a binary fullword field containing the number of arguments
following. PL/I only.

call-func
Is the name of a field which contains the call function ‘XRST’.

IOPCB-name
Is the name of the I1/0O PCB or the “dummy” I/O PCB supplied by the
CMPAT option in PSEGEN (C1PCB in the sample programs).

I/O-area-len
Is the name of the length field of the largest I/O area used by the user
program: must be a fullword.

work-area
Is the name of a 12-byte work area. This are should be set to blanks (X'40")
before the call and tested on return. If the program is being started
normally, the area will be unchanged. If the program is being restarted from
checkpoint, the ID supplied by the user in that CHKP call and restart JCL
will be placed in the first 8 bytes. If the user wishes to restart from a
checkpoint using the method other than IMS Program Restart, he may use
the XRST call to reposition GSAM databases by placing the checkpoint ID
in this area before issuing the call. This ID is the 8-byte left-aligned, user
supplied ID.

1st-area-len
Is the name of a field which contains the length of the first area to be
restored. The field must be a fullword.

1st-area
Is the name of the first area to be restored.

nth-area-len
Is the name of a field which contains the length of the nth area to be
restored (max n=7): must be a fullword. nth-area is the name of the nth
area to be restored (max n=7).

Notes:

1. The number of areas specified on the XRST call must be equal to the maximum
specified on any CHKP call.

2. The lengths of the areas specified on the XRST call must equal to or larger than
the lengths of the corresponding (in sequential order) areas of any CHKP call.

Chapter 18. Application Programming for the IMS Database Manager 193

IBM Confidential

3. The XRST call is issued only once and it must be the first request made to DL/I.
4. The only correct status code is bb: any other implies an error condition.

5. All “area-len” fields in PL/I must be defined as substructures. The name of the
major structure should, however, be specified in the call.

Using the Checkpoint Call

194

When DL/I receives a CHKP call from a program which initially issued a XRST call,
the following actions are taken:

» All database buffers modified by the program are written to DASD.

» Alog record is written, specifying this ID to the OS/VS system console and job
sysout.

» The user-specified areas (for example, application variables and control tables)
are recorded on the DL/I log data set. They should be specified in the initial
XRST call.

» The fully-qualified key of the last segment processed by the program on each
DL/I database is recorded on the DL/I log data set.

The format of the CKPT call in COBOL is:

CALL 'OBLTDLI' using call-func,IOPCB-name, I/0-area-len,I/0O=area
[,1st-area-len,1lst-area,...,nth-area-len,nth-area]).

The format of the CKPT call in PL/I is:

CALL PLITDLI [parmcount, call-func,IOPCB-name,I/0-area-len, I/0-area
[,1st-area-len,lst-area,...,nth-area-len,nth-area]):

The format of the CKPT call in Assembler is:

CALL ASMTDLI, (call-func,IOPCB-name,I/0-area-len,I/0-area
[,1st-area-len,lst-area,...,nth-area-len,nth-area]):

Where:

parmcount
Is the name of a binary fullword field containing the number of arguments
following. PL/I only.

call-func
Is the name of a field which contains the call function ‘CKPT’.

IOPCB-name
Is the name of the I/O PCB or the dummy I/O PCB in batch.

I/O-area-len
Is the name of the length field of the largest I/0O area used by the
application program: must be a fullword.

I/O-area
Is the name of the I/O area. The I/O area must contain the 8 byte
checkpoint ID. This is used for operator or programmer communication and
should consist of EBCDIC characters. In Pl/I, this parameter should be
specified as a pointer to a major structure, an array, or a character string.

The recommended format is MMMMnnnn where:

MMMM
Is the 4-character program identification.

nnnn Is the 4-character checkpoint sequence number, incremented at
each CHKP call.

IMS: An Introduction to IMS

IBM Confidential

1st-area-len (optional)
Is the name of a field that contains the length of the first area to checkpoint:
must be a fullword.

1st-area (optional)
Is the name of the first area to checkpoint.

nth-area-len (optional)
Is the name of the field that contains the length of the nth area to
checkpoint (max n=7): must be a fullword.

nth-area (optional)
Is the name of the nth area to checkpoint (max n=7).

Notes:

1. The only correct status code in batch is bb: any other specifies an error
situation.

2. Before restarting a program after failure, you always must first correct the failure
and recover your databases. You must reestablish your position in all IMS
database (except GSAM) after return from the checkpoint (that is, issue a get
unique).

3. All “area-len” fields in PL/I must be defined as substructures see the example
under note 5 of the XRST call.

4. Because the log tape is read forward during restart, the checkpoint ID must be
unique for each checkpoint.

Chapter 18. Application Programming for the IMS Database Manager 195

IBM Confidential

196 IMS: An Introduction to IMS

IBM Confidential

Chapter 19. Application Programming for the IMS Transaction
Manager

This chapter, which deals with writing application programs in the IMS Transaction
Manager environment, is divided into two major sections:

* “Application Program Processing”
* “Transaction Manager Application Design” on page 201

Application Program Processing

Basically, the MPP processing can be divided into five phases. Figure 73 on page

198 illustrates these phases and the list that follows Figure 73 on page 198
describes the phases.

© Copyright IBM Corp. 2004 197

IBM Confidential

INITIALIZE WORKING STORAGE

A

GU CALL FOR INPUT MESSAGE

CHECK
STATUS
CODE

A 4 A 4

OTHER

(ERROR) BLANK (GOBACK)

A

INPUT VALIDATION

v

APPLICATION AND DATABASE PROCESSING

A 4

ISRT OUTPUT MESSAGES

Figure 73. General MPP Structure and Flow

198

The following are the five phases of the flow of an MPP:
1. Initialization

Initialization is the clearing of working storage, which may contain data left-over
by the processing of a message from another terminal.

2. Retrieval of the scratch pad area (SPA) and input message

The application issues a call to IMS TM to retrieve a message from the
message queue. The application retrieves the SPA first if the transaction is
conversational.

3. Input syntax check

IMS TM checks the syntax of the input message. All checks which can be done
without accessing the database, including a consistency check with the status of
the conversation as maintained in the SPA.

4. Database processing

IMS: An Introduction to IMS

IBM Confidential

Database processing is performed preferably in one phase. This means that the
retrieval of a database segment is immediately followed by its update. Compare
this to an initial retrieve of all required segments followed by a second retrieve
and then update.

5. Output processing

The output message is built and inserted together with the SPA (only for
conversational transactions).

After finishing the processing of one input message, the program should go back to
step 1 and request a new input message. If there are no more input messages, IMS
will return a status code indicating that. At that time, the MPP must return control to
IMS.

Role of the PSB

The program specification block (PSB) for an MPP or a BMP contains, besides
database PCBs, one or more PCB (s) for logical terminal linkage. The very first
PCB always identifies the originating logical terminal. This PCB must be referenced
in the get unique and get next message calls. It must also be used when inserting
output messages to that LTERM. In addition, one or more alternate output PCBs
can be defined. Their LTERM destinations can be defined in the PCBs or set
dynamically with change destination calls.

DL/l Message Calls

The same DL/I language interface that is used for the access of databases is used
to access the message queues.

The principal DL/l message calls are:

GU (get unique)
This call must be used to retrieve the first, or only, segment of the input
message.

GN (get next)
This call must be used to retrieve second and subsequent message
segments.

ISRT (insert)
This call must be used to insert an output message segment into the output
message queue. Note: these output message(s) will not be sent until the
MPP terminates or requests another input message via a get unique.

CHNG (change destination)
This call can be used to set the output destination for subsequent insert
calls.

For a detailed description of the DL/I database calls and guidelines for their use,
see Chapter 18, “Application Programming for the IMS Database Manager,” on
page 165.

Conversational Processing

A transaction code can be defined as belonging to a conversational transaction
during IMS system definition. If so, an application program that processes that
transaction, can interrelate messages from a given terminal. The vehicle to
accomplish this is the scratch pad area (SPA). A unique SPA is created for each
physical terminal which starts a conversational transaction.

Chapter 19. Application Programming for the IMS Transaction Manager 199

IBM Confidential

Each time an input message is entered from a physical terminal in conversational
mode, its SPA is presented to the application program as the first message
segment (the actual input being the second segment). Before terminating or
retrieving another message (from another terminal), the program must return the
SPA to IMS with a message ISRT call.

The first time a SPA is presented to the application program when a conversational
transaction is started from a terminal, IMS will format the SPA with binary zeroes
(X'00"). If the program wishes to terminate the conversation, it can indicate this by
inserting the SPA with a blank transaction code.

Output Message Processing

As soon as an application reaches a synchronization point, its output messages in
the message queue become eligible for output processing. A synchronization point
is reached whenever the application program terminates or requests a new
message from the input queue via a GU call.

In general, output messages are processed by message format service before they
are transmitted via the telecommunications access method.

Different output queues can exist for a given LTERM, depending on the message

origin. They are, in transmission priority:

1. Response messages, that is, messages generated as a direct response (same
PCB) to an input message from this terminal.

2. Command responses.
3. Alternate output messages, messages generated via an alternate PCB.

Application Program Termination

200

The following sections discuss terminating your application program.

Normal Termination

The program returns control to IMS TM when it finishes processing. In a BMP, DLI,
or DBB processing region, your program can set the return code and pass it to the
next step in the job. If your program does not use the return code in this way, it is a
good idea to set it to zero as a programming convention.

Restriction: MPPs cannot pass return codes.

Abnormal Termination

Upon abnormal termination of a message or batch-message processing application
program for other reasons than deadlock resolution, internal commands are issued
to prevent rescheduling. These commands are the equivalent of a /STOP
command. They prevent continued use of the program and the transaction code in
process at the time of abnormal termination. The master terminal operator can
restart either or both stopped resources.

At the time abnormal termination occurs, a message is used to the master terminal
and to the input terminal that identifies the application program, transaction code,
and input terminal. It also contains the system and user completion codes. in
addition, the first segment of the input transaction, in process by the application at
abnormal termination, is displayed on the master terminal.

IMS: An Introduction to IMS

IBM Confidential

The database changes of a failing program are dynamically backed-out. Also, its
output messages inserted in the message queue since the last synchronization
point are cancelled.

Logging and Checkpoint/Restart Processing

To ensure the integrity of its databases and message processing IMS uses logging
and checkpoint/restart. In case of system failure, either software or hardware, IMS
can be restarted. This restart includes the repositioning of users’ terminals,
transactions, and databases.

Logging
During IMS execution, all information necessary to restart the system in the event of
hardware or software failure, is recorded on a online log data sets (OLDS).

The following critical system information is recorded on the OLDS:

* The receipt of an input message in the input queue

* The start of an MPP or BMP

» The receipt of a message by the MPP for processing

» Before and after images of database updates by the MPP or BMP
* The insert of a message into the queue by the MPP

* The termination of an MPP or BMP

* The successful receipt of an output message by the terminal

In addition to the above logging, all previous database record unchanged data is
written to the log data set. This log information is only used for dynamic back-out
processing of a failing MPP/BMP. as soon as the MPP/BMP reaches a
synchronization point, the dynamic log information of this program is discarded.

Emergency Restart

In case of failure, IMS is restarted with the log data set active at the time of failure.
Restart processing will back-out the database changes of incomplete MPPs and
BMPs. The output messages inserted by these incomplete MPPs will be deleted.

After back-out, the input messages are re-enqueued, the MPPs restarted, and the
pending output messages are re-transmitted. If a BMP was active at the time of
failure, it must be resubmitted by using a z/OS job. If the BMP uses the
XRST/CHKP calls, it must be restarted from its last successful checkpoint. In this
way, missing or inconsistent output is avoided.

Transaction Manager Application Design

We will distinguish between the following areas in the IMS database/data
communication design process:

* Program design

* Message Format Service (MFS) design

» Database design

In “Online Program Design” on page 204, we will concentrate on the design of
message processing programs (MPPs).

The MFS design will discuss the 3270 screen layouts and operator interaction.

Chapter 19. Application Programming for the IMS Transaction Manager 201

IBM Confidential

Although we will cover each of the above areas in separate sections, it should be
realized that they are largely dependent upon each other. Therefore, an overall
system design must be performed initially and an overall system review must follow
the design phase of each section

Online Transaction Processing Concepts

202

In an IMS online environment, one can view a transaction from three different
points:

* The application, that is, its processing characteristics and database accesses.
* The terminal user.
e The IMS system.

Each of the above constitutes a set of characteristics. These characteristics are
described in the following sections.

Application Characteristics
From an application point of view, we can identify:

» Data collection with no previous database access). This is not a typical IMS
application but can be part of an IMS application system.

« Update. This normally involves database reference and the subsequent updating
of the database. This is the environment of most IMS applications.

In typical IMS multi-application environment, the above characteristics are often
combined. However, a single transaction normally has only one of the above
characteristics.

Terminal User Characteristics
From the terminal user’s point of view, we distinguish:

» Single-interaction transactions.
* Multi-interaction transactions.

The single interaction transaction does not impose any dependency between any
input message and its corresponding output, and the next input message.

The multi-interaction transaction constitutes a dialogue between the terminal and
the message processing program (s). Both the terminal user and the message
processing rely on a previous interaction for the interpretation/processing of a
subsequent interaction.

IMS Characteristics
From the IMS system point of view, we distinguish:

* Non-response transactions
* Response transactions
» Conversational transactions

These IMS transaction characteristics are defined for each transaction during IMS
system definition.

With non-response transactions, IMS accepts multiple input messages (each being
a transaction) from a terminal without a need for the terminal to first accept the
corresponding output message, if any. These non-response transactions will not be
further considered in our sample.

IMS: An Introduction to IMS

IBM Confidential

With response transactions, IMS will not accept further transaction input from the
terminal before the corresponding output message is sent and interpreted by the
user.

Conversational transactions are similar to response transactions, in that no other
transactions can be entered from the terminal until the terminal is out of
conversational mode. With response mode, the terminal is locked until a reply is
received. This is not the case for conversational mode. Another difference is that for
conversation transactions, IMS provides a unique scratch pad area (SPA) for each
user to store vital information across successive input messages.

Transaction Response Time Considerations

In addition to the above characteristics, the transaction response time is often an
important factor in the design of online systems. The response time is the elapsed
time between the entering of an input message by the terminal operator and the
receipt of the corresponding output message at the terminal.

Two main factors, in general, constitute the response time:

* The telecommunication transmission time, which is dependent on such factors
as:

Terminal network configuration

Data communication access method and data communication line procedure
Amount of data transmitted, both input and output
— Data communication line utilization

* The internal IMS processing time, which is mainly determined by the MPP
service time. The MPP service time is the elapsed time required for the
processing of the transaction in the MPP region.

Choosing the Correct Characteristics
Each transaction in IMS can and should be categorized by one characteristic of
each of the previously discussed three sets.

Some combinations of characteristics are more likely to occur than others, but all of
them are valid.

In general, it is the designer’s choice as to which combination is attributed to a
given transaction. Therefore, it is essential that this selection of characteristics is a
deliberate part of the design process, rather than determined after implementation.

Following are some examples:

* Assume an inquiry for the customer name and address with the customer
number as input. The most straightforward way to implement this is clearly a
non-conversational response-type transaction.

* The entry of new customer orders could be done by a single response
transaction. The order number, customer number, detail information, part number,
quantity etc., could all be entered at the same time. The order would be
processed completely with one interaction. This is most efficient for the system,
but it may be cumbersome for the terminal user because she or he has to
re-enter the complete order in the case of a an error.

Quite often, different solutions are available for a single application. Which one to

choose should be based on a trade-off between system cost, functions, and user
convenience. The following sections will highlight this for the different design areas.

Chapter 19. Application Programming for the IMS Transaction Manager 203

IBM Confidential

Online Program Design

204

This area is second in importance to database design. We will limit the discussion
of this broad topic to the typical IMS environment. We will first discuss a number of
considerations so that you become familiar with them. Next, we will discuss the
design of the two online sample programs. You will notice that some discussions
are quite arbitrary and may not have to be adjusted for your own environment. Do
remember, however, that our prime objective is to make you aware of the factors
which influence these decisions.

Single versus Multiple Passes

A transaction can be handled with one interaction or pass, or with two or more
passes (a pass is one message in and one message out). Each pass bears a
certain cost in line time and in IMS and MPP processing time. So, in general, you
should use as few passes as possible. Whenever possible you should use the
current output screen to enter the next input. This is generally easy to accomplish
for inquiry transactions, where the lower part of the screen can be used for input
and the upper part for output. (See “Basic Screen Design” on page 205).

For update transactions, the choice is more difficult. The basic alternatives are:

One-pass update
After input validation, the database updates are all performed in the same
pass. This is the most efficient way from the system point of view. However,
correcting errors after the update confirmation is received on the terminal
requires additional passes or re-entering of data. An evaluation n of the
expected error rate is required.

Two-pass update
On the first pass, the input is validated, including database access. A status
message is sent to the terminal. If the terminal operator agrees, the
database will be updated in the second pass. With this approach, making
corrections is generally much simpler, especially when a scratch pad area is
used. However, the database is accessed twice.

You should realize, that, except for the SPA, no correlation exists between
successive interactions from a terminal. So, the database can be updated
by somebody else and the MPP may process a message for another
terminal between two successive passes.

Multi-pass update
In this case, each pass does a partial database update. The status of the
database and screen is maintained in the SPA. This approach should only
be taken for complex transactions. Also, remember that the terminal
operator experiences response times for each interaction. You also must
consider the impact on database integrity. IMS will only back-out the
database changes of the current interaction in the case of project or system
failure.

Notes:

1. IMS emergency restart with a complete log data set will reposition the
conversation. The terminal operator can proceed from the point where he or she
was at the time of failure.

2. When a conversational application program terminates abnormally, only the last
interaction is backed out.

The application must reposition the conversation after correction. For complex
situations, IMS provides an abnormal transaction exit routine. This is not covered in
our subset.

IMS: An Introduction to IMS

IBM Confidential

Conversational versus Non-Conversational

Conversational transactions are generally more expensive in terms of system cost
than non-conversational ones. However, they give better terminal operator service.
You should only use conversational transactions when you really need them. Also,
with the proper use of MFS, the terminal operator procedures sometimes can be
enhanced to almost the level of conversational processing.

Transaction or Program Grouping
It is the designer’s choice how much application function will be implemented by
one transaction and/or program. The following considerations apply:

* Inquiry-only. transactions should be simple transactions. These should be
normally implemented as non-conversational transactions. Also, they can be
defined as “non-recoverable inquiry-only™. If in addition, the associated MPPs
specify PROCOPT= GO in all their database PCB’s, no dynamic enqueue and

logging will be done for these transactions.

* Limited-function MPPs are smaller and easier to maintain. However, a very large
number of MPPs costs more in terms of IMS resources (control blocks and path
lengths).

» Transactions with a long MPP service time (many database accesses). should be
handled by separate programs.

Note: IMS provides a program-to-program message switch capability. This is not
part of our subset. With this facility, you can split the transaction processing in two
(or more) phases. The first (foreground) MPP does the checking and switches a
message (and, optionally, the SPA) to a (background) MPP in a lower priority
partition which performs the lengthy part of the transaction processing. In this way
the foreground MPP is more readily available for servicing other terminals. Also, if
no immediate response is required from the background MPP and the SPA is not
switched, the terminal is more readily available for entering another transaction.

Basic Screen Design

Generally, a screen can be divided into five areas, top to bottom:

1. Primary output area, contains general, fixed information for the current
transaction. The fields in this area should generally be protected.

2. Detail input/output area, used to enter and/or display the more variable part of
the transaction data. Accepted fields should be protected (under program
control): fields in error can be displayed with high intensity and unprotected to
allow for corrections.

3. MPP error message area. In general, one line is sufficient. This can be the
same line as 5 below.

4. Primary input, that is requested action and/or transaction code for next input,
and primary database access information.

5. System message field, used by IMS to display system messages and by the
terminal operator to enter commands.

For readability, the above areas should be separated by at least one blank line. The
above screen layout is a general one, and should be evaluated for each individual
application. IBM recommends that you develop a general screen layout and set of
formats to be used by incidental programs and programs in their initial test.

This can significantly reduce the number of format blocks needed and maintenance.

In any case, installation standards should be defined for a multi-application
environment.

Chapter 19. Application Programming for the IMS Transaction Manager 205

206

IBM Confidential

MFS Subset Restrictions

1. The maximum output length of a message segment is 1388 bytes: this is related
to our long message record length of 1500 bytes.

2. Aformat is designated for one screen size. This can be later changed via
additional MFS statements to support both screens and other devices with the
same set of format blocks. A 1920 character format can be displayed on the top
part of a 2560 or 3440 character display, and 480 character format can be
displayed on the top of a 960 character display.

3. A segment is one physical page, which is one logical page.

General Screen Layout Guidelines
The following performance guidelines should be observed when making screen
layouts:

* Avoid full-format operations. IMS knows what format is on the screen. So if the
format for the current output is the same as the one on the screen, IMS need not
retransmit all the literals and unused fields.

* Avoid unused fields, for example, undefined areas on the screen. Use the
attribute byte (non-displayed) of the next field as a delimiter, or expand a literal
with blanks. Each unused field causes additional control characters (5) to be
transmitted across the line during a full-format operation.

Note: This has to be weighed against user convenience. For example, our
sample customer name inquiry format does not have consecutive fields but it is
user convenient. Also, this application rarely needs a new format so we are not
so much concerned with unused fields.

Including the Transaction Code in the Format

IMS requires a transaction code as the first part of an input message. With MFS,
this transaction code can be defined as a literal. In doing so, the terminal operator
always enters data on a preformatted screen. The initial format is retrieved with the
/FORMAT command.

To allow for multiple transaction codes on one format, part of the transaction code
can be defined as a literal in the MID. The rest of the transaction code can then be
entered via a DFLD. This method is very convenient for the terminal operator
because the actual transaction codes are not of his concern. Any example of such a
procedure is shown in our sample customer order entry application.

Miscellaneous Design Considerations
The following design considerations should also be noted:

» The conversation will be terminated (insert blank transaction code in SPA) after
each successful order entry. This is transparent to the terminal operator, because
the output format is linked to a MID which contains the transaction code, so the
operator need not re-enter it.

* Each output message should contain all the data (except the MOD-defined
literals) to be displayed. You should never rely on already existing data on the
screen, because a clear or (re) start operation may have destroyed it.

» Using secondary indexing can significantly increase the accessibility of online
databases. Therefore, a wider use of this facility is discussed in “Secondary
Indexing” on page 48.

IMS: An Introduction to IMS

IBM Confidential

Chapter 20. The IMS Message Format Service

The chapter contains an overview of the Message Format Service (MFS) function of
IMS. MFS describes the screen input and output interaction with IMS online
programs.

The sections in this chapter are:

* “Overview of MFS”

* “MFS and 3270 Devices” on page 209

» “Relationships between MFS Control Blocks” on page 209
* “MFS Functions” on page 213

* “MFS Control Statements” on page 218

* “Generating MFS Control Blocks” on page 220

* “Maintaining the MFS Library” on page 221

Overview of MFS

Device
Input

Through the message format service (MFS), a comprehensive facility is provided for
IMS users of 3270 and other terminals/devices. MFS allows application
programmers to deal with simple logical messages instead of device dependent
data. This simplifies application development. The same application program may
deal with different device types using a single set of editing logic while device input
and output are varied to suit a specific device. The presentation of data on the
device or operator input may be changed without changing the application program.

Full paging capability is provided for display devices. This allows the application
program to write a large amount of data that will be divided into multiple screens for
display on the terminal. The capability to page forward and backward to different
screens within the message is provided for the terminal operator. The conceptual
view of the formatting operations for messages originating from or going to an
MFS-supported device is shown in Figure 74.

—

MFS
Supported
Device

A 4

Input Output Device
Message Message Output
=)
Application
MFS > I[':’)rpogram » MRS -
—
MFS
Supported
Device

Figure 74. Message Formatting Using MFS

MFS has three major components:
* MFS Language utility

* MFS pool manager

* MFS editor

The MFS language utility is executed offline to generate control blocks and place
them in a format control block data set named IMS.FORMAT. The control blocks
describe the message formatting that is to take place during message input or

© Copyright IBM Corp. 2004 207

208

IBM Confidential

output operations. They are generated according to a set of utility control
statements. There are four types of format control blocks:

* Message input descriptor (MID)

* Message output descriptor (MOD)
» Device input format (DIF)

* Device output format (DOF)

The MID and MOD blocks relate to application program input and output message
segment formats, and the DIF and DOF blocks relate to terminal I/O formats. The
MID and DIF blocks control the formatting of input messages, while the MOD and
DOF blocks control output message formatting.

Notes:

1. The DIF and the DOF control blocks are generated as a result of the format
(FMT) statement.

2. The MID and the MOD are generated as a result of the various message (MSG)
statements.

3. The initial formatting of a 3270 display is done by issuing the /FORMAT modname
command. This will format the screen with the specified MOD, as if a null
message was sent.

Figure 75 on page 209 provides an overview of the MFS operations.

IMS: An Introduction to IMS

IBM Confidential

Message &
Format Control
Statements

Provided by MFS

Application Designer

Offline Online
Execution Execution
______________ MFS
il Buffer Pool
MFS Format FORMAT 4 'y
Language Utility Library
A
MFS
Pool Manager
MFS <
Message Editor |« N |
| E—]
I Terminal or
Application
Message
Queues
A

C

Message Queue
Data Sets

’ Figure 75. Overview of Message Format Service Functions

MFS and 3270 Devices

The IMS Message Format Service (MFS), described in “Overview of MFS” on page
207, is always used to format data transmitted between IMS and the devices of the
3270 information display system. MFS provides a high level of device independence
for the application programmers and a means for the application system designer to
make full use of the 3270 device capabilities in terminal operations. Although our
subset only considers the 3270 devices, its use of MFS is such that it is
open-ended to the use of other MFS supported terminals when required.

Relationships between MFS Control Blocks

Several levels of linkage exist between MFS control blocks, as described in the
following sections.

“MFS Control Block Chaining” on page 210

“Linkage Between Device Fields and Message Fields” on page 210

“Linkage Between Logical Pages and Device Pages” on page 211

“Message Description Linkage” on page 212

“3270 Device Considerations Relative to Control Block Linkage” on page 212

Chapter 20. The IMS Message Format Service 209

IBM Confidential

MFS Control Block Chaining

Figure 76 shows the highest-level linkage, that of chained control blocks.

Message
Output
(MOD) A

Device

2

A4

Message
Input
(MID)

B

Output |,
(DOF) y

A 4

Device

A4

Message
Output

Input
(DIF)
X

A4

Device
Output

A 4

(MOD) _

(DOF) v

Figure 76. Chained Control Block Linkage

Legend:

1.
2.

This linkage must exist

If the linkage does not exist, device input data from 3270 devices is not
processed by MFS. It is always used in our subset.

This linkage is provided for application program convenience. It provides a MOD
name to be used by IMS if the application program does not provide a name via
the format name option of the insert call. The default MOD, DFSMO2, will be
used if none is specified at all, or if the input is a message switch to an
MFS-supported terminal.

The user-provided names for the DOF and DIF used in one output/input
sequence are normally the same. The MFS language utility alters the internal
name for the DIF to allow the MFS pool manger to distinguish between the DOF
and DIF.

The direction of the linkage allows many message descriptions to use the same
device format if desired. One common device format can be used for several
application programs whose output and input message formats, as seen at the
application program interface, are quite different.

Linkage Between Device Fields and Message Fields

Figure 77 on page 211 shows the second level of linkage, that between message
fields and device fields. The arrows show the direction of reference in the MFS
language utility control statements, not the direction of data flow.

210 IMS: An Introduction to IMS

IBM Confidential

Message Output Device Output
(MOD) (DOF)
MFLD » DFLD
MFLD —_| | » DFLD
MFLD >< DFLD
MFLD — | > DFLD

v v

Message Input Device Input
(MID) (DIF)
MFLD » DFLD
MFLD —| ___—» DFLD
MFLD e DFLD
MFLD — | > DFLD

Figure 77. Linkage Between Message Fields and Device Fields

Linkage Between Logical Pages and Device Pages

References to device fields by message fields need not be in any particular

sequence. An MFLD need not see any DFLD, in which case it simply defines space

in the application program segment to be ignored if the MFLD is for output, and

padded if the MFLD is for input. Device fields need not be referenced by message
fields, in which case they are established on the device, but no output data from the
output message is transmitted to them. Device input data is ignored if the DFLD is
not referenced by the input MFLD.

Figure 78 shows a third level of linkage, one which exists between the LPAGE and

the DPAGE.

Message Output Device Output
(MOD) (DOF)
LPAGE » DPAGE
LPAGE—————*DPAGE
LPAGE — 3 DPAGE

I
LPAGE —

Figure 78. LPAGE - DPAGE Linkage

The LPAGE in the MOD must see a DPAGE in the DOF. However, all DPAGEs

need not be referred to from a given MOD.

Chapter 20. The IMS Message Format Service

211

IBM Confidential

Because we will always have single segment input in our subset, the defined
MFLDs in the MID can refer to DFLDs in any DPAGE. But input data for any given
input message from the device is limited to fields defined in a single DPAGE.

Message Description Linkage

Figure 79 shows a fourth level of linkage. It is optionally available to allow selection
of the MID based on which MOD LPAGE is displayed when input data is received
from the device.

Message Output ,| Device Output
(MOD) (DOF)
! LPAGE
1
2 LPAGE
2
LPAGE
A X
Message Input | 3 R Device Input
(MID) (DIF)
B
A A
Message Input |3

A 4

(MID)

Message Input |3
(MID)

Figure 79. Optional Message Description Linkage

|
Legend:
1. The next MID name provided with the MSG statement is used if no name is
provided with the current LPAGE.

2. If the next MID name is provided with the current LPAGE, input will be
processed using this page.

3. For 3270 devices, all MIDs must refer to the same DIF. This is the same
user-provided name used to refer to the DOF when the MOD was defined.

3270 Device Considerations Relative to Control Block Linkage

Since output to 3270 display devices establishes fields on the device using
hardware capabilities, and field locations cannot be changed by the operator,
special linkage restrictions exist. Because formatted input can only occur from a
screen formatted by output, the LPAGE and physical page description used for
formatting input is always the same as that used to format the previous output. The
MFS language utility enforces this restriction by ensuring that the format name used
for input editing is the same as the format name used for the previous output
editing. Furthermore, if the DIF corresponding to the previous DOF cannot be
fetched during online processing, an error message is sent to the 3270 display.

212 IMS: An Introduction to IMS

IBM Confidential

MFS Functions

The following sections contain a description of the basic MFS functions.
* “Input Message Formatting”

* “Output Message Formatting” on page 214

* “MFS Formats Supplied by IBM” on page 218

Input Message Formatting

All device input data received by IMS is edited before being passed to an
application program. The editing is performed by either IMS basic edit or MFS. It
tells how the use of MFS is determined and how, when MFS is used, the desired
message format is established based on the contents of two MFS control blocks —
the device input format (DIF) and the message input descriptor (MID).

All 3270 devices included in an IMS system use MFS. The 3270s always operate in
formatted mode except when first powered on, after the CLEAR key has been
pressed, or when the MOD used to process an output message does not name a
MID to be used for the next input data. While in unformatted mode, you can still
enter commands and transactions, but they will not be formatted by MFS.

Input Data Formatting Using MFS

Input data from terminals in formatted mode is formatted based on the contents of
two MFS control blocks, the MID and the DIF. The MID defines how the data should
be formatted for presentation to the application program and points to the DIF
associated with the input device. See Figure 80.

DIF — MID

DFLD1 MFLD1
MFLD 1 2 3 4 5
DFLD2 MFLD2
> » LL | ZZ | AAAA | BB DDDD | CC
DFLD3 MFLD3
\ / Program
DFLD4 MFLD4

DFLD5 /| \ MFLD5

Device

MFS

} Figure 80. MFS Input Formatting
The MID contains a list of message descriptor fields (MFLDs) which define the
layout of the input segment as is to be seen by an application program. The DIF
contains a list of device descriptor fields (DFLDs) which define what data is to be
expected from which part of the device (that is, the location on the screen). MFS
maps the data of the DFLDs into the corresponding MFLDs. The application
program is largely device independent because different physical inputs can be
mapped into the same input segment.

MFLD statements are to define:

Chapter 20. The IMS Message Format Service 213

IBM Confidential

* The device fields (DFLDs) defined in the DIF which contents will be included in
the message presented to the application program.

* Constants, defined as literals to be included in the message: a common use of
literals is to specify the transaction code.

In addition, the MFLD statement defines:
* The length of the field expected by the application program

» Left or right justification and the fill character to be used for padding the data
received from the device.

* A‘nodata’ literal for the MFLD if the corresponding DFLD does not contain any
input data.

It should be noted that all message fields as defined by MFLD statements will be
presented to the application program in our subset. Furthermore, there will always
be only one input message segment, except for conversational transaction, in which
case the first segment presented to the program is the SPA. The SPA is never
processed by MFS, however.

Input Message Field Attribute Data

Sometimes input messages are simply updated by an application program and
returned to the device. In such a case, it may simplify message definition layouts in
the MPP if the attribute data bytes are defined in the message input descriptor as
well as the message output descriptor.

Non-literal input message fields can be defined to allow for 2 bytes of attribute data.
When a field is so defined, MFS will reserve the first 2 bytes of the field for attribute
data to be filled in by the application program when preparing an output message.
In this way, the same program area can be conveniently used for both input and
output messages. When attribute space is specified, the specified field length must
include the 2 attribute bytes.

IMS Passwords

If the input data is for a password protected transaction, a device field should be
designated for the password. The device field in which the operator keys in the
password will not be displayed on the screen.

Output Message Formatting

214

All output messages for 3270 devices are processed by MFS in a way similar to
input.

Output Data Formatting Using MFS

All MFS output formatting is based on the contents of two MFS control blocks -- the
message output descriptor (MOD) and the device output format (DOF). See

Figure 81 on page 215, the MOD defines output message content and optionally,
literal data to be considered part of the output message. Message fields ((MFLDs)
refer to device field locations via device field (DFLD) definitions in the DOF. The
DOF specifies the use of hardware features, device field locations and attributes,
and constant data considered part of the format.

IMS: An Introduction to IMS

IBM Confidential

DOF <« MOD

DFLD1 MFLD1

MFLD 1 2 3 4 5
LL | ZZ | AAAA | BB DDDD | CC

DFLD2 MFLD2 |

A
A

DFLD3 \ / MFLD3

Program

DFLD4 MFLD4

DFLD5 /| \ MFLD5

MFS

’ Figure 81. MFS Output Formatting

The layout of the output message segment to be received by MFS from the
program is defined by a list of MFLDs in the MOD. The DOF in turn contains a list
of DFLDs which define where the data is to be displayed/printed on the output
device. MFS maps the data of the MFLDs into the corresponding DFLDs.

All fields in an output message segment must be defined by MFLD statements.
Fields can be truncated or omitted by two methods. The first method is to insert a
short segment. The second method is to place a NULL character (X3f) in the field.
Fields are scanned left (including the attribute bytes, if any) to right for NULL
character. The first NULL character encountered terminates the field. If the first
character of a field is a NULL character, no data is sent to the screen for this field.
This means that if the field is protected and the same device format is used, the old
data remains on the screen. To erase the old data of a protected field, the
application program must send X’403F’ to that field.

Positioning of all fields in the segment remains the same regardless of NULL
characters. Truncated fields are padded with a program tab character in our subset.
Furthermore, we always specify erase-unprotected-all in the display device format.
This erases all old data in unprotected fields on the screen.

Notes:

1. Device control characters are invalid in output message fields under MFS. The
control characters HT, CR, LF, NL, and BS will be changed to null characters
(X'CC"). All other nongraphic characters are X'40' through X'FE'.

2. With MFS, the same output message can be mapped on different device types
with one set of formats. This will not be covered in our subset. The formatting
discussed will cover one device type per device format, not a mixture. However,
the mixture can be implemented later by changing the formats.

In addition to MFLD data, constants can be mapped into DFLDs. These constants
are defined as literals in DFLD or MFLD statements.

Multiple Segment Output Messages

MFS allows mapping of one or more output segments of the same message onto a
single or multiple output screens. In our subset, we will limit ourselves to a
one-to-one relationship between output message segments and logical output
pages. Also one logical output page is one physical output page (one screen).

Chapter 20. The IMS Message Format Service 215

MSG
DEFINITION

LPAGEH1

IBM Confidential

Logical Paging of Output Messages

Logical paging is the way output message segments are grouped for formatting.
when logical paging is used, an output message descriptor is defined with one or
more LPAGE statements. Each LPAGE statement relates a segment produced by a
application program to corresponding device page.

Using logical paging, the simplest message definition consists of one LPAGE and
one segment description. As shown in Figure 82, each segment produced by the
application program is formatted in the same manner using the corresponding
device page.

DEVICE APPLICATION
PAGE PROGRAM OUTPUT

» DPAGE1 SEGMENTH1
OR
SEGMENTH1

SEGMENT1
SEGMENT1

Figure 82. An Output Message Definition with One LPAGE

MSG
DEFINITION

LPAGE1

With the definition shown in Figure 82, each output segment inserted by the MPP
will be displayed with the same and only defined MOD/DOF combination.

If different formats are required for different output segments, one LPAGE and SEG
statement combination is required for each different format. Each LPAGE can link to
a different DPAGE if desired. This would not be required if only defined constants
and MFLDs differ in the MOD.

The selection of the DPAGE to be used for formatting is based on the value of a
special MFLD in the output segment. This value is set by the MPP. If the LPAGE to
be used cannot be determined from the segment, the last defined LPAGE is used.
See also the description of the COND parameter of the LPAGE statement. Each
LPAGE can refer to a corresponding DPAGE with unique DFLDs for its own device
layout. See Figure 83.

DEVICE APPLICATION
PAGE PROGRAM OUTPUT
» DPAGE1 SEGMENT1

SEG1

(LPAGE1 condition specified)

Figure 83. An Output Message Definition with Multiple Pages

Operator Paging of Output Messages

If an output message contains multiple pages, the operator requests the next one
with the program access key 1 (PA1). If PA1 is pressed after the last page is
received, IMS will send a warning message in our subset. If PA1 is then pressed
again, IMS will send the first page of the current output message again.

216 IMS: An Introduction to IMS

IBM Confidential

The operator can always request the next output message by pressing the PA2 key.
Also, in our subset, when the operator enters data, the current output message is
dequeued.

Output Message Literal Fields

Output message fields can be defined to contain literal data specified by the user
during definition of the MOD. MFS will include the specified literal data in the output
message before sending the message to the device.

MFS users can define their own literal field or select a literal from a number of
literals provided by MFS. The MFS-provided literals are referred to as system
literals and include various date formats, a time stamp, the output message
sequence number, the logical terminal name, and the number of the logical page.

Output Device Field Attributes

Device field attributes are defined in DFLD statements. For 3270 display devices,
specific attributes may be defined in the ATTR= keyword of the DFLD statement. If
not, default attributes will be assumed. The message field definition (MFLD)
corresponding to the device field (DFLD) may specify that the application program
can dynamically modify the device field attributes.

When a field is so defined, the first 2 data bytes of the field are reserved for
attribute data. Any error in the 2-byte specification causes the entire specification to
be ignored, and the attributes defined or defaulted for the device field are used.

Note: The two attribute bytes should not be included in the length specification of
the device field (DFLD) in the DOF.

The default attributes for non-literal 3270 display device fields are alphabetic,
not-protected, normal display intensity, and not-modified. Literal device fields have
forced attributes of protected and not-modified and default attributes of numeric and
normal display intensity. Numeric protected fields provide an automatic skip function
on display terminals.

Cursor Positioning

The positioning of the cursor on the 3270 display device is done in either of two
ways:

» The DPAGE statement defines the default cursor position.

* The program can dynamically set the cursor to the beginning of a field via its
attribute byte.

System Message Field (3270 Devices)

Output formats for 3270 display devices may be defined to include a system
message field. If so defined, all IMS messages except DFS057 REQUESTED
FORMAT BLOCK NOT AVAILABLE are not sent to the system message field
whenever the device is in formatted mode. Providing a system message field avoids
the display of an IMS message elsewhere on the screen, thereby overlaying the
screen data.

When MPS sends a message to the system message field, it activates the device
alarm (if any) but does not reset modified data tags (MDTs) or move the cursor.
Since an IMS error message is an immediate response to input, MDTs remain as
they were at entry and the operator merely has to correct the portion of the input in
error.

Chapter 20. The IMS Message Format Service 217

IBM Confidential

In our subset we will always reserve the bottom line of the screen for the system
message field. This field can also be used to enter commands, for example,
/FORMAT.

Printed Page Format Control
The 3270 printer devices are also supported via MFS. Three basic options can be
specified in the DEV statement (PAGE=operand):

» A defined fixed number of lines should always be printed for each page (SPACE).
This is the recommended option because it preserves forms positioning.

* Only lines containing data should be printed. Blank lines are deleted (FLOAT).

» All lines defined by DFLDs should be printed, whether or not the DFLDs contain
data (DEFN).

MFS Formats Supplied by IBM

Several formats are included in the IMS.FORMAT library during IMS system
definition. They are used mainly for the master terminal, and for system commands
and messages. All these formats start with the characters DFS. One of the most
interesting in our subset is the default output message format. This format is used
for broadcast messages from the master terminal and application program output
messages with no MOD name specified. It permits two segments of input, each
being a line on the screen. DFSDF2 is the format name, DFSMO2 the MOD and
DFSMI2 the MID name.

When the master terminal format is used, any message whose MOD name begins
with DFSMO (except DFSMOQ3) is displayed in the message area. Any message
whose MOD name is DFSDPO(1 is displayed in the display area.

Messages with other MOD names cause the warning message USER MESSAGE
WAITING to be displayed at the lower portion of the display screen.

MFS Control Statements

This section describes the control statements used by the MFS language utility.
There are two major categories of control statements:

« Definition statements are used to define message formats and device formats.

» Compiler statements are used to control the compilation and listings of the
definition statements

The definition of message formats and device formats is accomplished with
separate hierarchical sets of definition statements. The following sections list some
of the components of these statements.

» “Definition Statement for Message Formats”

» “Definition Statement for Device Formats” on page 219

* “Compiler Statement Definitions” on page 219

» “Relationships Between Source Statements and Control Blocks” on page 219

Definition Statement for Message Formats
The statement set used to define message formats consists of the following

statements:
MSG Identifies the beginning of a message definition.
LPAGE Identifies a related group of segment/field definitions.

218 IMS: An Introduction to IMS

IBM Confidential

PASSWORD Identifies a field to be used as an IMS password
SEG Identifies a message segment.

MFLD Defines a message field. lterative processing of MFLD statements
can be invoked by specifying DO and ENDDO statements. To
accomplish lterative processing, the DO statement is placed before
the MFLD statement (or statements) and the ENDDO after the
MFLD statement (or statements). For more information about the
DO and ENDDO statements, see “Compiler Statement Definitions.”

MSGEND Identifies the end of a message definition.

Definition Statement for Device Formats
The statement set used to define message formats consists of the following

statements:

FMT Identifies the beginning of a format definition.

DEV Identifies the device type and operational options.

DIV Identifies the format as input, output, or both.

DPAGE Identifies a group of device fields corresponding to an LPAGE group
of message fields.

DFLD Defines a device field. lterative processing of DFLD statements can
be invoked by specifying DO and ENDDO statements. To
accomplish iterative processing, the DO statement is placed before
the DFLD statement (or statements) and the ENDDO after the
DFLD statement (or statements). For more information about the
DO and ENDDO statements, see “Compiler Statement Definitions.”

FMTEND Identifies the end of the format definition.

Compiler Statement Definitions
Compilation statements have variable functions. The most common ones are:

DO Requests iterative processing of MFLD or DFLD definition
statements.

EJECT Ejects SYSPRINT listing to the next page.

END Defines the end of data for SYSIN processing.

ENDDO Terminates iterative processing of MFLD or DFLD.

PRINT Controls SYSPRINT options.

SPACE Skips lines on the SYSPRINT listing.

TITLE Provides a title for the SYSPRINT listing.

Compilation statements are to be inserted at logical points in the sequence of
control statements. For example, TITLE could be placed first, and EJECT could be
placed before each MSG or FMT statement.

Relationships Between Source Statements and Control Blocks

In general, the following relations exists between the MFS source statements and
control blocks:

* One MSG statement and its associated LPAGE, SEG, and MFLD statements
generate one MID or MOD.

Chapter 20. The IMS Message Format Service 219

IBM Confidential

* One FMT statement and its associated DEV, DIV, DPAGE and DFLD statements
generate one DIF and/or DOF. For displays, both the DIF and DOF are
generated, because the output screen is used for input too.

In addition the MFS utilities will establish the linkages between the MID, MOD, DIF,
and DOF. These are the result of the symbolic name linkages defined in the source
statements.

Generating MFS Control Blocks

MFS control blocks are generated by running the MFS language utility program.
This is a two-stage process. See Figure 84. The sections that follow the figure
describe this process.

Step 1 Step 2 Step 3
DFSUPAAO DFSUNUBO DFSUTSAO
MFS > Source
Source i’ Statement Phase2 Build
R Preprocessor Processor Index
A A A
A 4
IMS.REFERAL SYSTEXT
v

DFSUNUAO
. Phase1 N
e Processor "

SEQBLKS |15 FORMAT

Figure 84. Overview of Process for Creating MFS Control Blocks

The MFS control block generated can be executed by an IMS supplied cataloged
procedure: MFSUTL. Multiple formats can be generated with one execution. In
general you would process a complete format set, that is, the related message and
format descriptions, in one execution of MFSUTL. Three executions of MFSUTL are
involved to process the three sample format sets.

“Steps for Generating MFS Control Blocks” describes the three steps of generating
MFS control blocks.

Steps for Generating MFS Control Blocks
Generating MFS Control Blocks (Step 1)

Preprocessor
The MFS language utility preprocessor generates intermediate text blocks
(ITBs), based on the MFS language source statement. Definitions of the
MFS language utility source input are discussed in “MFS Control
Statements” on page 218. The primary function of the preprocessor is to

220 IMS: An Introduction to IMS

IBM Confidential

perform syntax and relational validity checks on user specifications and
generate ITBs. The ITBs are then processed by phase 1 of the utility to
generate message (MSG) and format (FMT) descriptors. An ITB generated
for each MSG or FMT description can be re-used by the same or another
format set, once it has been successfully added to the IMS.REFERAL data
set. Each such description must start with a MSG or FMT statement and
end with a MSGEND or FMTEND statement.

Phase 1
The preprocessor invokes phase 1 if the highest return code generated by
the preprocessor is less than 16. Phase 1 places the newly constructed
descriptors on the SEQBLKS data set. Each member processed has a
control record placed on the SEQBLKS data set identifying the member, its
size, and the date and time of creation. This control record is followed by
the image of the descriptor as constructed by phase 1. Alternatively, if an
error is detected during descriptor building, an error control record is placed
on the SEQBLKS data set for the description in error, identifying the
member in error, and the date and time the error control record was
created. In addition, phase 1 returns a completion code of 12 to z/OS. If
execution of step 2 is forced, phase 2 will delete descriptors with build
errors.

Generating MFS Control Blocks (Step 2)

Phase 2
Phase 2 receives control as a job step following phase 1. After final
processing, it will place the new descriptors into the IMS.FORMAT library.
Phase 2 passes a completion code to z/OS for step 2 based on all the
descriptor maintenance to IMS.FORMAT for a given execution of the MFS
language utility.

Generating MFS Control Blocks (Step 3)

In our subset, we will always execute the MFS service utility after MFS control block
generation. This utility will build a new index directory block which will eliminate the
need for directory search operations during the IMS online operation.

Maintaining the MFS Library

The IMS.FORMAT and IMS.REFERAL libraries are standard, z/OS partitioned data
sets. Backup and restore operations can be done with the proper z/OS utility
(IEBCOPY). However, care must be taken that both the IMS.FORMAT and
IMS.REFERAL data sets are dumped and restored at the same time.

Chapter 20. The IMS Message Format Service 221

